Albert S Kim, Christian M Girgis, Michelle M McDonald
{"title":"破骨细胞再循环与地诺单抗停药后的反弹现象","authors":"Albert S Kim, Christian M Girgis, Michelle M McDonald","doi":"10.1007/s11914-022-00756-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Inhibition of receptor activator of nuclear factor kappa-B ligand (RANKL) with denosumab is an effective treatment in a number of conditions including osteoporosis where suppression of bone resorption is desired. However, denosumab discontinuation is associated with rebound increase in bone resorption and subsequent loss in bone mass and a rapid return to baseline fracture risk. We review recent data on the rebound increase in bone resorption following denosumab discontinuation and the potential mechanisms behind this phenomenon.</p><p><strong>Recent findings: </strong>Osteoclasts have been considered to be highly specialised cells that undergo apoptosis after fulfilling their function of bone resorption. However, recent studies suggest that osteoclasts are longer lived cells which migrate through vasculature and are capable of undergoing fission into a novel cell type (the osteomorph) and re-fusion in a process termed osteoclast recycling. The life cycle of the osteoclast is more complex than previously appreciated. Osteoclast recycling provides a novel mechanistic framework to examine changes in osteoclast biology in response to treatment of bone diseases and provides an exciting new avenue towards personalised medicine.</p>","PeriodicalId":11080,"journal":{"name":"Current Osteoporosis Reports","volume":"20 6","pages":"505-515"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718877/pdf/","citationCount":"0","resultStr":"{\"title\":\"Osteoclast Recycling and the Rebound Phenomenon Following Denosumab Discontinuation.\",\"authors\":\"Albert S Kim, Christian M Girgis, Michelle M McDonald\",\"doi\":\"10.1007/s11914-022-00756-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Inhibition of receptor activator of nuclear factor kappa-B ligand (RANKL) with denosumab is an effective treatment in a number of conditions including osteoporosis where suppression of bone resorption is desired. However, denosumab discontinuation is associated with rebound increase in bone resorption and subsequent loss in bone mass and a rapid return to baseline fracture risk. We review recent data on the rebound increase in bone resorption following denosumab discontinuation and the potential mechanisms behind this phenomenon.</p><p><strong>Recent findings: </strong>Osteoclasts have been considered to be highly specialised cells that undergo apoptosis after fulfilling their function of bone resorption. However, recent studies suggest that osteoclasts are longer lived cells which migrate through vasculature and are capable of undergoing fission into a novel cell type (the osteomorph) and re-fusion in a process termed osteoclast recycling. The life cycle of the osteoclast is more complex than previously appreciated. Osteoclast recycling provides a novel mechanistic framework to examine changes in osteoclast biology in response to treatment of bone diseases and provides an exciting new avenue towards personalised medicine.</p>\",\"PeriodicalId\":11080,\"journal\":{\"name\":\"Current Osteoporosis Reports\",\"volume\":\"20 6\",\"pages\":\"505-515\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Osteoporosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11914-022-00756-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-022-00756-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Osteoclast Recycling and the Rebound Phenomenon Following Denosumab Discontinuation.
Purpose of review: Inhibition of receptor activator of nuclear factor kappa-B ligand (RANKL) with denosumab is an effective treatment in a number of conditions including osteoporosis where suppression of bone resorption is desired. However, denosumab discontinuation is associated with rebound increase in bone resorption and subsequent loss in bone mass and a rapid return to baseline fracture risk. We review recent data on the rebound increase in bone resorption following denosumab discontinuation and the potential mechanisms behind this phenomenon.
Recent findings: Osteoclasts have been considered to be highly specialised cells that undergo apoptosis after fulfilling their function of bone resorption. However, recent studies suggest that osteoclasts are longer lived cells which migrate through vasculature and are capable of undergoing fission into a novel cell type (the osteomorph) and re-fusion in a process termed osteoclast recycling. The life cycle of the osteoclast is more complex than previously appreciated. Osteoclast recycling provides a novel mechanistic framework to examine changes in osteoclast biology in response to treatment of bone diseases and provides an exciting new avenue towards personalised medicine.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.