Rachel Josselsohn, Betsy J Barnes, Theodosia A Kalfa, Lionel Blanc
{"title":"在正常和炎症条件下,在髓海中寻找红细胞母细胞岛。","authors":"Rachel Josselsohn, Betsy J Barnes, Theodosia A Kalfa, Lionel Blanc","doi":"10.1097/MOH.0000000000000756","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation.</p><p><strong>Recent findings: </strong>The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors.</p><p><strong>Summary: </strong>Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":"30 3","pages":"80-85"},"PeriodicalIF":3.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Navigating the marrow sea towards erythromyeloblastic islands under normal and inflammatory conditions.\",\"authors\":\"Rachel Josselsohn, Betsy J Barnes, Theodosia A Kalfa, Lionel Blanc\",\"doi\":\"10.1097/MOH.0000000000000756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation.</p><p><strong>Recent findings: </strong>The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors.</p><p><strong>Summary: </strong>Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.</p>\",\"PeriodicalId\":55196,\"journal\":{\"name\":\"Current Opinion in Hematology\",\"volume\":\"30 3\",\"pages\":\"80-85\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOH.0000000000000756\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000756","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Navigating the marrow sea towards erythromyeloblastic islands under normal and inflammatory conditions.
Purpose of review: Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation.
Recent findings: The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors.
Summary: Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.