利用已知支持度拟合和测试对数线性子群模型

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-09-01 Epub Date: 2023-06-14 DOI:10.1007/s11336-023-09922-9
David J Hessen
{"title":"利用已知支持度拟合和测试对数线性子群模型","authors":"David J Hessen","doi":"10.1007/s11336-023-09922-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the support of the joint probability distribution of categorical variables in the total population is treated as unknown. From a general total population model with unknown support, a general subpopulation model with its support equal to the set of all observed score patterns is derived. In maximum likelihood estimation of the parameters of any such subpopulation model, the evaluation of the log-likelihood function only requires the summation over a number of terms equal to at most the sample size. It is made clear that the parameters of a hypothesized total population model are consistently and asymptotically efficiently estimated by the values that maximize the log-likelihood function of the corresponding subpopulation model. Next, new likelihood ratio goodness-of-fit tests are proposed as alternatives to the Pearson chi-square goodness-of-fit test and the likelihood ratio test against the saturated model. In a simulation study, the asymptotic bias and efficiency of maximum likelihood estimators and the asymptotic performance of the goodness-of-fit tests are investigated.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fitting and Testing Log-Linear Subpopulation Models with Known Support.\",\"authors\":\"David J Hessen\",\"doi\":\"10.1007/s11336-023-09922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the support of the joint probability distribution of categorical variables in the total population is treated as unknown. From a general total population model with unknown support, a general subpopulation model with its support equal to the set of all observed score patterns is derived. In maximum likelihood estimation of the parameters of any such subpopulation model, the evaluation of the log-likelihood function only requires the summation over a number of terms equal to at most the sample size. It is made clear that the parameters of a hypothesized total population model are consistently and asymptotically efficiently estimated by the values that maximize the log-likelihood function of the corresponding subpopulation model. Next, new likelihood ratio goodness-of-fit tests are proposed as alternatives to the Pearson chi-square goodness-of-fit test and the likelihood ratio test against the saturated model. In a simulation study, the asymptotic bias and efficiency of maximum likelihood estimators and the asymptotic performance of the goodness-of-fit tests are investigated.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09922-9\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09922-9","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文将总人口中分类变量联合概率分布的支持度视为未知数。从支持度未知的一般总体模型中,可以推导出支持度等于所有观测得分模式集合的一般子总体模型。在对任何此类子群体模型的参数进行最大似然估计时,只需对对数似然函数进行求和,求和项的数量最多等于样本量。这就清楚地表明,假设的总体模型参数可以通过使相应子总体模型的对数似然函数最大化的值得到一致且渐近有效的估计。接下来,我们提出了新的似然比拟合优度检验,以替代皮尔逊卡方拟合优度检验和针对饱和模型的似然比检验。在模拟研究中,研究了最大似然估计器的渐近偏差和效率以及拟合优度检验的渐近性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting and Testing Log-Linear Subpopulation Models with Known Support.

In this paper, the support of the joint probability distribution of categorical variables in the total population is treated as unknown. From a general total population model with unknown support, a general subpopulation model with its support equal to the set of all observed score patterns is derived. In maximum likelihood estimation of the parameters of any such subpopulation model, the evaluation of the log-likelihood function only requires the summation over a number of terms equal to at most the sample size. It is made clear that the parameters of a hypothesized total population model are consistently and asymptotically efficiently estimated by the values that maximize the log-likelihood function of the corresponding subpopulation model. Next, new likelihood ratio goodness-of-fit tests are proposed as alternatives to the Pearson chi-square goodness-of-fit test and the likelihood ratio test against the saturated model. In a simulation study, the asymptotic bias and efficiency of maximum likelihood estimators and the asymptotic performance of the goodness-of-fit tests are investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信