{"title":"生物信息学分析以获得减肥手术后皮下脂肪组织中调节的关键基因。","authors":"Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu","doi":"10.1080/21623945.2022.2115212","DOIUrl":null,"url":null,"abstract":"<p><p>Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"550-561"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427031/pdf/","citationCount":"4","resultStr":"{\"title\":\"Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.\",\"authors\":\"Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu\",\"doi\":\"10.1080/21623945.2022.2115212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"11 1\",\"pages\":\"550-561\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427031/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2022.2115212\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2115212","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.
Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.