生物信息学分析以获得减肥手术后皮下脂肪组织中调节的关键基因。

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu
{"title":"生物信息学分析以获得减肥手术后皮下脂肪组织中调节的关键基因。","authors":"Shuai Chen,&nbsp;Yicheng Jiang,&nbsp;Xiaoyang Qi,&nbsp;Peng Song,&nbsp;Liming Tang,&nbsp;Hanyang Liu","doi":"10.1080/21623945.2022.2115212","DOIUrl":null,"url":null,"abstract":"<p><p>Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"550-561"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427031/pdf/","citationCount":"4","resultStr":"{\"title\":\"Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.\",\"authors\":\"Shuai Chen,&nbsp;Yicheng Jiang,&nbsp;Xiaoyang Qi,&nbsp;Peng Song,&nbsp;Liming Tang,&nbsp;Hanyang Liu\",\"doi\":\"10.1080/21623945.2022.2115212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"11 1\",\"pages\":\"550-561\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427031/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2022.2115212\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2115212","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 4

摘要

减肥手术(BS)是治疗肥胖和代谢性疾病的可靠方法,然而,脂质代谢的调节过程仍未得到很好的阐明。通过GEO数据库中关于皮下脂肪组织(SAT)的GSE29409、GSE59034和GSE72158三个转录组学数据集分析BS后差异表达基因(deg),鉴定出37个deg。加权基因共表达网络分析(WGCNA)、最后绝对收缩和选择算子(LASSO)逻辑回归和支持向量机递归特征消除(SVM-RFE)算法进一步筛选了参与调控STMN2、SFRP4、APOE和MXRA5的4个关键基因。使用GSE53376数据集进一步确认SFRP4、APOE和MXRA5在术后的差异表达。GSEA分析显示手术后免疫相关调控通路的激活。最后,通过实验方法发现MXRA5的沉默会影响前脂肪细胞分化过程中PPARγ和CEBPα的表达,并影响脂滴的形成。综上所述,BS后动员了SAT免疫调节,而MXRA5参与脂质代谢调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.

Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.

Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.

Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.

Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信