{"title":"不同剂量氯胺酮通过调节Bmal1/NMDA/NF-Κb轴对老年肝部分切除小鼠术后神经认知功能的影响","authors":"Xiaoli Niu, Simin Zheng, Siyuan Li, Hongtao Liu","doi":"10.1159/000520210","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The current study set out to probe the function of different doses of ketamine in postoperative neurocognitive disorder (PND) in aged mice undergoing partial hepatectomy (PH) with the involvement of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1)/n-methyl-D-aspartate (NMDA)/nuclear factor-kappa B (NF-κB) axis.</p><p><strong>Methods: </strong>First, aged mice were intraperitoneally injected with different doses of ketamine prior to surgery, followed by hepatic lobectomy. Afterward, mice cognitive function was assessed. In addition, Bmal1 mRNA expression patterns were quantified, while NMDA 2B receptor, NF-κB p65, synapsin 1, and postsynaptic density 95 (PSD95) levels were determined; the release of inflammatory factors was detected, and ionized calcium-binding adapter molecule-1 expression was measured to quantify microglia activation. In addition, Bmal1-knockout (Bmal1-KO) mice were intraperitoneally injected with a subanesthetic dose of ketamine to verify the mechanism of Bmal1 in regulating the NMDA 2B subunit (NR2B)/NF-κB axis to affect PH in aged patients.</p><p><strong>Results: </strong>After PH, hippocampal-dependent memory was impaired, and synapsin 1 and PSD95 levels were downregulated. On the other hand, PH diminished Bmal1 expression but elevated NR2B and NF-κB p65 levels and anesthetic doses of ketamine further regulated the Bmal1/NMDA/NF-κB axis. In Bmal1-KO mice, the NMDA/NF-κB axis was activated, the release of inflammatory cytokines was promoted, and hippocampus-dependent memory was impaired, which were reversed by a subanesthetic dose of ketamine.</p><p><strong>Conclusion: </strong>Altogether, findings obtained in our study indicated that a subanesthetic dose of ketamine activated Bmal1, downregulated the NMDA/NF-κB axis, and reduced inflammation and microglia activation to alleviate PND in aged mice undergoing PH.</p>","PeriodicalId":12222,"journal":{"name":"European Surgical Research","volume":"63 4","pages":"182-195"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Role of Different Doses of Ketamine in Postoperative Neurocognitive Function in Aged Mice Undergoing Partial Hepatectomy by Regulating the Bmal1/NMDA/NF-Κb Axis.\",\"authors\":\"Xiaoli Niu, Simin Zheng, Siyuan Li, Hongtao Liu\",\"doi\":\"10.1159/000520210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The current study set out to probe the function of different doses of ketamine in postoperative neurocognitive disorder (PND) in aged mice undergoing partial hepatectomy (PH) with the involvement of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1)/n-methyl-D-aspartate (NMDA)/nuclear factor-kappa B (NF-κB) axis.</p><p><strong>Methods: </strong>First, aged mice were intraperitoneally injected with different doses of ketamine prior to surgery, followed by hepatic lobectomy. Afterward, mice cognitive function was assessed. In addition, Bmal1 mRNA expression patterns were quantified, while NMDA 2B receptor, NF-κB p65, synapsin 1, and postsynaptic density 95 (PSD95) levels were determined; the release of inflammatory factors was detected, and ionized calcium-binding adapter molecule-1 expression was measured to quantify microglia activation. In addition, Bmal1-knockout (Bmal1-KO) mice were intraperitoneally injected with a subanesthetic dose of ketamine to verify the mechanism of Bmal1 in regulating the NMDA 2B subunit (NR2B)/NF-κB axis to affect PH in aged patients.</p><p><strong>Results: </strong>After PH, hippocampal-dependent memory was impaired, and synapsin 1 and PSD95 levels were downregulated. On the other hand, PH diminished Bmal1 expression but elevated NR2B and NF-κB p65 levels and anesthetic doses of ketamine further regulated the Bmal1/NMDA/NF-κB axis. In Bmal1-KO mice, the NMDA/NF-κB axis was activated, the release of inflammatory cytokines was promoted, and hippocampus-dependent memory was impaired, which were reversed by a subanesthetic dose of ketamine.</p><p><strong>Conclusion: </strong>Altogether, findings obtained in our study indicated that a subanesthetic dose of ketamine activated Bmal1, downregulated the NMDA/NF-κB axis, and reduced inflammation and microglia activation to alleviate PND in aged mice undergoing PH.</p>\",\"PeriodicalId\":12222,\"journal\":{\"name\":\"European Surgical Research\",\"volume\":\"63 4\",\"pages\":\"182-195\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Surgical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000520210\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Surgical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000520210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
Role of Different Doses of Ketamine in Postoperative Neurocognitive Function in Aged Mice Undergoing Partial Hepatectomy by Regulating the Bmal1/NMDA/NF-Κb Axis.
Background: The current study set out to probe the function of different doses of ketamine in postoperative neurocognitive disorder (PND) in aged mice undergoing partial hepatectomy (PH) with the involvement of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1)/n-methyl-D-aspartate (NMDA)/nuclear factor-kappa B (NF-κB) axis.
Methods: First, aged mice were intraperitoneally injected with different doses of ketamine prior to surgery, followed by hepatic lobectomy. Afterward, mice cognitive function was assessed. In addition, Bmal1 mRNA expression patterns were quantified, while NMDA 2B receptor, NF-κB p65, synapsin 1, and postsynaptic density 95 (PSD95) levels were determined; the release of inflammatory factors was detected, and ionized calcium-binding adapter molecule-1 expression was measured to quantify microglia activation. In addition, Bmal1-knockout (Bmal1-KO) mice were intraperitoneally injected with a subanesthetic dose of ketamine to verify the mechanism of Bmal1 in regulating the NMDA 2B subunit (NR2B)/NF-κB axis to affect PH in aged patients.
Results: After PH, hippocampal-dependent memory was impaired, and synapsin 1 and PSD95 levels were downregulated. On the other hand, PH diminished Bmal1 expression but elevated NR2B and NF-κB p65 levels and anesthetic doses of ketamine further regulated the Bmal1/NMDA/NF-κB axis. In Bmal1-KO mice, the NMDA/NF-κB axis was activated, the release of inflammatory cytokines was promoted, and hippocampus-dependent memory was impaired, which were reversed by a subanesthetic dose of ketamine.
Conclusion: Altogether, findings obtained in our study indicated that a subanesthetic dose of ketamine activated Bmal1, downregulated the NMDA/NF-κB axis, and reduced inflammation and microglia activation to alleviate PND in aged mice undergoing PH.
期刊介绍:
''European Surgical Research'' features original clinical and experimental papers, condensed reviews of new knowledge relevant to surgical research, and short technical notes serving the information needs of investigators in various fields of operative medicine. Coverage includes surgery, surgical pathophysiology, drug usage, and new surgical techniques. Special consideration is given to information on the use of animal models, physiological and biological methods as well as biophysical measuring and recording systems. The journal is of particular value for workers interested in pathophysiologic concepts, new techniques and in how these can be introduced into clinical work or applied when critical decisions are made concerning the use of new procedures or drugs.