Nur Aina Mazlan, Nurul Ain Mohd Zaki, Rohayu Haron Narashid, Noorfatekah Talib, Janaki Manokaran, Fadhlina Che Arshad, Shukor Sanim Mohd Fauzi, Nazri Che Dom, Mohammad Valipour, Ramzah Dambul, Stephen Blenkinsop
{"title":"利用哨兵-2a 和哨兵-5p 卫星研究 COVID-19 限制调度令(MCO)对马来西亚半岛排放的影响。","authors":"Nur Aina Mazlan, Nurul Ain Mohd Zaki, Rohayu Haron Narashid, Noorfatekah Talib, Janaki Manokaran, Fadhlina Che Arshad, Shukor Sanim Mohd Fauzi, Nazri Che Dom, Mohammad Valipour, Ramzah Dambul, Stephen Blenkinsop","doi":"10.1007/s41748-022-00329-7","DOIUrl":null,"url":null,"abstract":"<p><p>The unprecedented outbreak of Coronavirus Disease 2019 (COVID-19) has impacted the whole world in every aspect including health, social life, economic activity, education, and the environment. The pandemic has led to an improvement in air quality all around the world, including in Malaysia. Lockdowns have resulted in industry shutting down and road travel decreasing which can reduce the emission of Greenhouse Gases (GHG) and air pollution. This research assesses the impact of the COVID-19 lockdown on emissions using the Air Pollution Index (API), aerosols, and GHG which is Nitrogen Dioxide (NO<sub>2</sub>) in Malaysia. The data used is from Sentinel-5p and Sentinel-2A which monitor the air quality based on Ozone (O<sub>3</sub>) and NO<sub>2</sub> concentration. Using an interpolated API Index Map comparing 2019, before the implementation of a Movement Control Order (MCO), and 2020, after the MCO period we examine the impact on pollution during and after the COVID-19 lockdown. Data used Sentinel-5p, Sentinel-2A, and Air Pollution Index of Malaysia (APIMS) to monitor the air quality that contains NO<sub>2</sub> concentration. The result has shown the recovery in air quality during the MCO implementation which indirectly shows anthropogenic activities towards the environmental condition. The study will help to enhance and support the policy and scope for air pollution management strategies as well as raise public awareness of the main causes that contribute to air pollution.</p>","PeriodicalId":45867,"journal":{"name":"Earth Systems and Environment","volume":"7 1","pages":"347-358"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547097/pdf/","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Restriction Movement Control Order (MCO) Impacted Emissions of Peninsular Malaysia Using Sentinel-2a and Sentinel-5p Satellite.\",\"authors\":\"Nur Aina Mazlan, Nurul Ain Mohd Zaki, Rohayu Haron Narashid, Noorfatekah Talib, Janaki Manokaran, Fadhlina Che Arshad, Shukor Sanim Mohd Fauzi, Nazri Che Dom, Mohammad Valipour, Ramzah Dambul, Stephen Blenkinsop\",\"doi\":\"10.1007/s41748-022-00329-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unprecedented outbreak of Coronavirus Disease 2019 (COVID-19) has impacted the whole world in every aspect including health, social life, economic activity, education, and the environment. The pandemic has led to an improvement in air quality all around the world, including in Malaysia. Lockdowns have resulted in industry shutting down and road travel decreasing which can reduce the emission of Greenhouse Gases (GHG) and air pollution. This research assesses the impact of the COVID-19 lockdown on emissions using the Air Pollution Index (API), aerosols, and GHG which is Nitrogen Dioxide (NO<sub>2</sub>) in Malaysia. The data used is from Sentinel-5p and Sentinel-2A which monitor the air quality based on Ozone (O<sub>3</sub>) and NO<sub>2</sub> concentration. Using an interpolated API Index Map comparing 2019, before the implementation of a Movement Control Order (MCO), and 2020, after the MCO period we examine the impact on pollution during and after the COVID-19 lockdown. Data used Sentinel-5p, Sentinel-2A, and Air Pollution Index of Malaysia (APIMS) to monitor the air quality that contains NO<sub>2</sub> concentration. The result has shown the recovery in air quality during the MCO implementation which indirectly shows anthropogenic activities towards the environmental condition. The study will help to enhance and support the policy and scope for air pollution management strategies as well as raise public awareness of the main causes that contribute to air pollution.</p>\",\"PeriodicalId\":45867,\"journal\":{\"name\":\"Earth Systems and Environment\",\"volume\":\"7 1\",\"pages\":\"347-358\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Systems and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41748-022-00329-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Systems and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41748-022-00329-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
COVID-19 Restriction Movement Control Order (MCO) Impacted Emissions of Peninsular Malaysia Using Sentinel-2a and Sentinel-5p Satellite.
The unprecedented outbreak of Coronavirus Disease 2019 (COVID-19) has impacted the whole world in every aspect including health, social life, economic activity, education, and the environment. The pandemic has led to an improvement in air quality all around the world, including in Malaysia. Lockdowns have resulted in industry shutting down and road travel decreasing which can reduce the emission of Greenhouse Gases (GHG) and air pollution. This research assesses the impact of the COVID-19 lockdown on emissions using the Air Pollution Index (API), aerosols, and GHG which is Nitrogen Dioxide (NO2) in Malaysia. The data used is from Sentinel-5p and Sentinel-2A which monitor the air quality based on Ozone (O3) and NO2 concentration. Using an interpolated API Index Map comparing 2019, before the implementation of a Movement Control Order (MCO), and 2020, after the MCO period we examine the impact on pollution during and after the COVID-19 lockdown. Data used Sentinel-5p, Sentinel-2A, and Air Pollution Index of Malaysia (APIMS) to monitor the air quality that contains NO2 concentration. The result has shown the recovery in air quality during the MCO implementation which indirectly shows anthropogenic activities towards the environmental condition. The study will help to enhance and support the policy and scope for air pollution management strategies as well as raise public awareness of the main causes that contribute to air pollution.
期刊介绍:
Earth Systems and Environment(ESEV) publishes peer-reviewed original and review articles on the entire range of Earth systems and environment in order to further our understanding of the natural workings and various processes and interactions that govern the Earth systems in response to complex environmental problems caused by natural and human-induced forcings.
The journal disseminates high-quality information on cutting-edge developments in the various research fields of Earth systems and environment based on new methods, theories, and applications. It has a multidisciplinary character, focusing on interrelated scientific topics combining diverse aspects of the Earth systems and environment including:
Climate and atmospheric sciences; Earth and environment related agricultural sciences; natural hazards and engineering; marine sciences; ecology; desertification; pollution; geo-environmental hazards; droughts and floods; hydrosphere, lithosphere and troposphere dynamics; waste management; numerical models of earth systems; geographical information systems; remote sensing; and environmental health, etc.
In order to meaningfully explore these topics, researchers in the environmental Earth science disciplines are invited to contribute their original research and review articles on significant scientific advances in the form of papers, technical notes, broad reports, case studies, reviews, brief communications and discussions.
More about the journal:
Published by Springer in partnership with King Abdulaziz University (KAU).
Indexed in Web of Science ESCI and Scopus (2021 Cite Score = 6.5).
Authors of the best papers receive an award and a remuneration from KAU each year.
Papers are screening for originality and similarities before handling them by topical editors.
The journal uses double-blind review.
The first round of peer review does not exceed 30-45 days.
Mostly two/three or even four revisions are required before final acceptance.
Committed to meeting standards of ethical behavior at all stages of the publication process.
The COPE code of conduct and Springer editorial policies are used as the basis for the publication process.
Earth Systems & Environment (ESEV) is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here:
https://www.springer.com/us/editorial-policies