定量分析醚化多糖衍生物的取代度/摩尔取代度。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Designed Monomers and Polymers Pub Date : 2022-03-23 eCollection Date: 2022-01-01 DOI:10.1080/15685551.2022.2054118
Xue-Li Liu, Chun-Feng Zhu, Han-Chun Liu, Jia-Ming Zhu
{"title":"定量分析醚化多糖衍生物的取代度/摩尔取代度。","authors":"Xue-Li Liu, Chun-Feng Zhu, Han-Chun Liu, Jia-Ming Zhu","doi":"10.1080/15685551.2022.2054118","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"75-88"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956314/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.\",\"authors\":\"Xue-Li Liu, Chun-Feng Zhu, Han-Chun Liu, Jia-Ming Zhu\",\"doi\":\"10.1080/15685551.2022.2054118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":\"25 1\",\"pages\":\"75-88\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2022.2054118\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2054118","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于多糖具有无毒、可生物降解、可从可再生资源中获取以及成本效益高等独特特性,因此在科技领域发挥着非常重要的作用。多糖的各种化学改性衍生物为食品和非食品行业提供了广泛的高附加值产品。在化学改性中,醚化多糖是最广泛的衍生物之一,它通过引入醚基,通常在酸性和碱性条件下都很稳定。羟烷基化、烷基化、羧甲基化、阳离子化和氰基乙基化是制备多糖醚衍生物常用的一些改性方法。此外,通过结合不同的化学技术手段来创造新型改性方法的趋势也日益明显。正确确定取代度(DS)/摩尔取代度(MS)至关重要。本文旨在总结合成醚化多糖的发展情况,包括测定 MS/DS 的分析方法、测量过程和相关机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.

Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.

Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.

Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives.

Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信