山茶油(Camellia oleifera Abel.)治疗可改善载脂蛋白E (ApoE)-/-小鼠高脂肪饮食诱导的动脉粥样硬化。

IF 3.1 4区 医学 Q2 Agricultural and Biological Sciences
Tianyang Huang, Jianhui Jiang, YongJun Cao, Junze Huang, Fuan Zhang, Guozhen Cui
{"title":"山茶油(Camellia oleifera Abel.)治疗可改善载脂蛋白E (ApoE)-/-小鼠高脂肪饮食诱导的动脉粥样硬化。","authors":"Tianyang Huang,&nbsp;Jianhui Jiang,&nbsp;YongJun Cao,&nbsp;Junze Huang,&nbsp;Fuan Zhang,&nbsp;Guozhen Cui","doi":"10.12938/bmfh.2022-005","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is the main cause of cardiovascular diseases, and healthy dietary habits are a feasible strategy to prevent atherosclerosis development. Camellia oil, an edible plant oil, exhibits multiple beneficial cardiovascular effects. Our previous study showed that oral administration of camellia oil attenuated hyperglycemia, fat deposits in the liver, and the atherosclerosis index in high-fat diet (HFD)-induced obese mice. Here, an atherosclerosis model of apolipoprotein E (ApoE)<sup>-/-</sup> mice induced by HFD was used to study the effect of camellia oil on atherosclerosis, and 16S rRNA gene sequencing was used to analyze the changes in gut microbiota composition. The results showed that camellia oil significantly inhibited the formation of atherosclerotic plaques in ApoE<sup>-/-</sup> mice, which were characterized by significantly reduced levels of serum total cholesterol and enhanced levels of serum high-density lipoprotein cholesterol. The aortic levels of interleukin-6 and tumor necrosis factor were decreased. The results of the 16S rRNA analysis showed that after camellia oil interventions, the intestinal flora of ApoE<sup>-/-</sup> mice changed significantly, with the diversity of intestinal flora especially increasing, the relative abundances of Bacteroides, <i>Faecalibaculum, Bilophila</i>, and <i>Leuconostoc</i> increasing, and the Firmicutes/Bacteroidetes ratio and Firmicutes abundance decreasing. Collectively, our findings confirmed the promising value of camellia oil in preventing the development of atherosclerosis in ApoE<sup>-/-</sup> mice. Mechanistically, this preventive effect of camellia oil was probably due to its lipid-lowering activity, anti-inflammatory effects, and alteration of the gut microbiota composition in the mice.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/db/bmfh-42-056.PMC9816045.pdf","citationCount":"3","resultStr":"{\"title\":\"Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)<sup>-/-</sup> mice.\",\"authors\":\"Tianyang Huang,&nbsp;Jianhui Jiang,&nbsp;YongJun Cao,&nbsp;Junze Huang,&nbsp;Fuan Zhang,&nbsp;Guozhen Cui\",\"doi\":\"10.12938/bmfh.2022-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis is the main cause of cardiovascular diseases, and healthy dietary habits are a feasible strategy to prevent atherosclerosis development. Camellia oil, an edible plant oil, exhibits multiple beneficial cardiovascular effects. Our previous study showed that oral administration of camellia oil attenuated hyperglycemia, fat deposits in the liver, and the atherosclerosis index in high-fat diet (HFD)-induced obese mice. Here, an atherosclerosis model of apolipoprotein E (ApoE)<sup>-/-</sup> mice induced by HFD was used to study the effect of camellia oil on atherosclerosis, and 16S rRNA gene sequencing was used to analyze the changes in gut microbiota composition. The results showed that camellia oil significantly inhibited the formation of atherosclerotic plaques in ApoE<sup>-/-</sup> mice, which were characterized by significantly reduced levels of serum total cholesterol and enhanced levels of serum high-density lipoprotein cholesterol. The aortic levels of interleukin-6 and tumor necrosis factor were decreased. The results of the 16S rRNA analysis showed that after camellia oil interventions, the intestinal flora of ApoE<sup>-/-</sup> mice changed significantly, with the diversity of intestinal flora especially increasing, the relative abundances of Bacteroides, <i>Faecalibaculum, Bilophila</i>, and <i>Leuconostoc</i> increasing, and the Firmicutes/Bacteroidetes ratio and Firmicutes abundance decreasing. Collectively, our findings confirmed the promising value of camellia oil in preventing the development of atherosclerosis in ApoE<sup>-/-</sup> mice. Mechanistically, this preventive effect of camellia oil was probably due to its lipid-lowering activity, anti-inflammatory effects, and alteration of the gut microbiota composition in the mice.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/db/bmfh-42-056.PMC9816045.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2022-005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.2022-005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

动脉粥样硬化是心血管疾病的主要原因,健康的饮食习惯是预防动脉粥样硬化发展的可行策略。茶油是一种可食用的植物油,具有多种有益心血管的作用。我们之前的研究表明,口服茶油可以减轻高脂肪饮食(HFD)诱导的肥胖小鼠的高血糖、肝脏脂肪沉积和动脉粥样硬化指数。本研究采用HFD诱导的载脂蛋白E (ApoE)-/-小鼠动脉粥样硬化模型,研究山茶油对动脉粥样硬化的影响,并采用16S rRNA基因测序分析肠道菌群组成的变化。结果表明,茶油显著抑制ApoE-/-小鼠动脉粥样硬化斑块的形成,其特征是血清总胆固醇水平显著降低,血清高密度脂蛋白胆固醇水平显著升高。主动脉白介素-6和肿瘤坏死因子水平降低。16S rRNA分析结果显示,茶油干预后,ApoE-/-小鼠肠道菌群发生显著变化,肠道菌群多样性尤其增加,Bacteroides、Faecalibaculum、Bilophila、Leuconostoc的相对丰度增加,厚壁菌门/拟杆菌门比值和厚壁菌门丰度降低。总的来说,我们的研究结果证实了茶油在预防ApoE-/-小鼠动脉粥样硬化方面的潜在价值。从机制上讲,山茶油的这种预防作用可能是由于其降脂活性、抗炎作用和改变小鼠肠道微生物群组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)<sup>-/-</sup> mice.

Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)<sup>-/-</sup> mice.

Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)<sup>-/-</sup> mice.

Camellia oil (Camellia oleifera Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE)-/- mice.

Atherosclerosis is the main cause of cardiovascular diseases, and healthy dietary habits are a feasible strategy to prevent atherosclerosis development. Camellia oil, an edible plant oil, exhibits multiple beneficial cardiovascular effects. Our previous study showed that oral administration of camellia oil attenuated hyperglycemia, fat deposits in the liver, and the atherosclerosis index in high-fat diet (HFD)-induced obese mice. Here, an atherosclerosis model of apolipoprotein E (ApoE)-/- mice induced by HFD was used to study the effect of camellia oil on atherosclerosis, and 16S rRNA gene sequencing was used to analyze the changes in gut microbiota composition. The results showed that camellia oil significantly inhibited the formation of atherosclerotic plaques in ApoE-/- mice, which were characterized by significantly reduced levels of serum total cholesterol and enhanced levels of serum high-density lipoprotein cholesterol. The aortic levels of interleukin-6 and tumor necrosis factor were decreased. The results of the 16S rRNA analysis showed that after camellia oil interventions, the intestinal flora of ApoE-/- mice changed significantly, with the diversity of intestinal flora especially increasing, the relative abundances of Bacteroides, Faecalibaculum, Bilophila, and Leuconostoc increasing, and the Firmicutes/Bacteroidetes ratio and Firmicutes abundance decreasing. Collectively, our findings confirmed the promising value of camellia oil in preventing the development of atherosclerosis in ApoE-/- mice. Mechanistically, this preventive effect of camellia oil was probably due to its lipid-lowering activity, anti-inflammatory effects, and alteration of the gut microbiota composition in the mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience of Microbiota, Food and Health
Bioscience of Microbiota, Food and Health Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
5.50
自引率
3.20%
发文量
24
期刊介绍: Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信