{"title":"槲皮素上调人宫颈癌肿瘤抑制microrna的表达。","authors":"Motoki Murata, Satomi Komatsu, Emi Miyamoto, Chihiro Oka, Ichian Lin, Motofumi Kumazoe, Shuya Yamashita, Yoshinori Fujimura, Hirofumi Tachibana","doi":"10.12938/bmfh.2022-056","DOIUrl":null,"url":null,"abstract":"<p><p>Quercetin, a flavonol present in many vegetables and fruits, has been identified as a chemoprevention agent in several cancer models. However, the molecular mechanism of quercetin's anticancer activity is not entirely understood. MicroRNAs (miRNAs), small noncoding RNAs, have been reported to play key roles in various biological processes by regulating their target genes. We hypothesized that quercetin can exert an anticancer effect through the regulation of miRNAs. To test this hypothesis, we investigated the effects of quercetin on the expression of tumor-suppressive miRNAs in cervical cancer. Quercetin up-regulated the in vivo and in vitro expression of tumor-suppressive miRNAs miR-26b, miR-126, and miR-320a. Quercetin suppressed the level of β-catenin, encoded by catenin beta 1 (CTNNB1), by up-regulating miR-320a in HeLa cells. Moreover, quercetin increased the expression of mir-26b, mir-126, and mir-320a precursors in HeLa cells. The results from this study show that quercetin has the potential to prevent cervical cancer by regulating the expression of tumor-suppressive miRNAs.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":"42 1","pages":"87-93"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/0f/bmfh-42-087.PMC9816044.pdf","citationCount":"4","resultStr":"{\"title\":\"Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer.\",\"authors\":\"Motoki Murata, Satomi Komatsu, Emi Miyamoto, Chihiro Oka, Ichian Lin, Motofumi Kumazoe, Shuya Yamashita, Yoshinori Fujimura, Hirofumi Tachibana\",\"doi\":\"10.12938/bmfh.2022-056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quercetin, a flavonol present in many vegetables and fruits, has been identified as a chemoprevention agent in several cancer models. However, the molecular mechanism of quercetin's anticancer activity is not entirely understood. MicroRNAs (miRNAs), small noncoding RNAs, have been reported to play key roles in various biological processes by regulating their target genes. We hypothesized that quercetin can exert an anticancer effect through the regulation of miRNAs. To test this hypothesis, we investigated the effects of quercetin on the expression of tumor-suppressive miRNAs in cervical cancer. Quercetin up-regulated the in vivo and in vitro expression of tumor-suppressive miRNAs miR-26b, miR-126, and miR-320a. Quercetin suppressed the level of β-catenin, encoded by catenin beta 1 (CTNNB1), by up-regulating miR-320a in HeLa cells. Moreover, quercetin increased the expression of mir-26b, mir-126, and mir-320a precursors in HeLa cells. The results from this study show that quercetin has the potential to prevent cervical cancer by regulating the expression of tumor-suppressive miRNAs.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":\"42 1\",\"pages\":\"87-93\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bc/0f/bmfh-42-087.PMC9816044.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2022-056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.2022-056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer.
Quercetin, a flavonol present in many vegetables and fruits, has been identified as a chemoprevention agent in several cancer models. However, the molecular mechanism of quercetin's anticancer activity is not entirely understood. MicroRNAs (miRNAs), small noncoding RNAs, have been reported to play key roles in various biological processes by regulating their target genes. We hypothesized that quercetin can exert an anticancer effect through the regulation of miRNAs. To test this hypothesis, we investigated the effects of quercetin on the expression of tumor-suppressive miRNAs in cervical cancer. Quercetin up-regulated the in vivo and in vitro expression of tumor-suppressive miRNAs miR-26b, miR-126, and miR-320a. Quercetin suppressed the level of β-catenin, encoded by catenin beta 1 (CTNNB1), by up-regulating miR-320a in HeLa cells. Moreover, quercetin increased the expression of mir-26b, mir-126, and mir-320a precursors in HeLa cells. The results from this study show that quercetin has the potential to prevent cervical cancer by regulating the expression of tumor-suppressive miRNAs.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.