Seonmin Lee, Kyung Jo, Seul-Ki-Chan Jeong, Yun-Sang Choi, Samooel Jung
{"title":"甜菜粉和焦糖色素在肉类模拟物烹饪前后牛肉颜色模拟中的水平优化。","authors":"Seonmin Lee, Kyung Jo, Seul-Ki-Chan Jeong, Yun-Sang Choi, Samooel Jung","doi":"10.5851/kosfa.2023.e45","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, concentration levels of beet powder (BP) and caramel color (CC) were optimized to simulate beef color in meat analogs before and after cooking. The central composite design of response surface methodology (RSM) was used to set the levels of BP and CC, and the CIE L*, CIE a*, and CIE b* were selected as the responses for RSM. After optimization, myoglobin-free beef patties were prepared with three optimized levels of BP and CC. When raw, all the patties had the same color as natural beef; however, CIE L*, CIE a*, and CIE b* were statistically different from those of beef after cooking (p<0.05). Moreover, the use of BP and CC induced \"browning\" after the cooking process, with no excessive yellow color. Therefore, based on the overall desirability in the color optimization using RSM, the combination of BP (1.32%) and CC (1.08%) with the highest overall desirability can be used to simulate the color change of beef in meat analogs.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"43 5","pages":"889-900"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/11/kosfa-43-5-889.PMC10493565.pdf","citationCount":"0","resultStr":"{\"title\":\"Level Optimization of Beet Powder and Caramel Color for Beef Color Simulation in Meat Analogs before and after Cooking.\",\"authors\":\"Seonmin Lee, Kyung Jo, Seul-Ki-Chan Jeong, Yun-Sang Choi, Samooel Jung\",\"doi\":\"10.5851/kosfa.2023.e45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, concentration levels of beet powder (BP) and caramel color (CC) were optimized to simulate beef color in meat analogs before and after cooking. The central composite design of response surface methodology (RSM) was used to set the levels of BP and CC, and the CIE L*, CIE a*, and CIE b* were selected as the responses for RSM. After optimization, myoglobin-free beef patties were prepared with three optimized levels of BP and CC. When raw, all the patties had the same color as natural beef; however, CIE L*, CIE a*, and CIE b* were statistically different from those of beef after cooking (p<0.05). Moreover, the use of BP and CC induced \\\"browning\\\" after the cooking process, with no excessive yellow color. Therefore, based on the overall desirability in the color optimization using RSM, the combination of BP (1.32%) and CC (1.08%) with the highest overall desirability can be used to simulate the color change of beef in meat analogs.</p>\",\"PeriodicalId\":12459,\"journal\":{\"name\":\"Food Science of Animal Resources\",\"volume\":\"43 5\",\"pages\":\"889-900\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/11/kosfa-43-5-889.PMC10493565.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science of Animal Resources\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5851/kosfa.2023.e45\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2023.e45","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Level Optimization of Beet Powder and Caramel Color for Beef Color Simulation in Meat Analogs before and after Cooking.
In this study, concentration levels of beet powder (BP) and caramel color (CC) were optimized to simulate beef color in meat analogs before and after cooking. The central composite design of response surface methodology (RSM) was used to set the levels of BP and CC, and the CIE L*, CIE a*, and CIE b* were selected as the responses for RSM. After optimization, myoglobin-free beef patties were prepared with three optimized levels of BP and CC. When raw, all the patties had the same color as natural beef; however, CIE L*, CIE a*, and CIE b* were statistically different from those of beef after cooking (p<0.05). Moreover, the use of BP and CC induced "browning" after the cooking process, with no excessive yellow color. Therefore, based on the overall desirability in the color optimization using RSM, the combination of BP (1.32%) and CC (1.08%) with the highest overall desirability can be used to simulate the color change of beef in meat analogs.
期刊介绍:
Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.