MCA-UNet:用于医学图像自动分割的多尺度交叉共关注U-Net。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2023-01-30 eCollection Date: 2023-12-01 DOI:10.1007/s13755-022-00209-4
Haonan Wang, Peng Cao, Jinzhu Yang, Osmar Zaiane
{"title":"MCA-UNet:用于医学图像自动分割的多尺度交叉共关注U-Net。","authors":"Haonan Wang, Peng Cao, Jinzhu Yang, Osmar Zaiane","doi":"10.1007/s13755-022-00209-4","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image segmentation is a challenging task due to the high variation in shape, size and position of infections or lesions in medical images. It is necessary to construct multi-scale representations to capture image contents from different scales. However, it is still challenging for U-Net with a simple skip connection to model the global multi-scale context. To overcome it, we proposed a dense skip-connection with cross co-attention in U-Net to solve the semantic gaps for an accurate automatic medical image segmentation. We name our method MCA-UNet, which enjoys two benefits: (1) it has a strong ability to model the multi-scale features, and (2) it jointly explores the spatial and channel attentions. The experimental results on the COVID-19 and IDRiD datasets suggest that our MCA-UNet produces more precise segmentation performance for the consolidation, ground-glass opacity (GGO), microaneurysms (MA) and hard exudates (EX). The source code of this work will be released via https://github.com/McGregorWwww/MCA-UNet/.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884736/pdf/","citationCount":"3","resultStr":"{\"title\":\"MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation.\",\"authors\":\"Haonan Wang, Peng Cao, Jinzhu Yang, Osmar Zaiane\",\"doi\":\"10.1007/s13755-022-00209-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical image segmentation is a challenging task due to the high variation in shape, size and position of infections or lesions in medical images. It is necessary to construct multi-scale representations to capture image contents from different scales. However, it is still challenging for U-Net with a simple skip connection to model the global multi-scale context. To overcome it, we proposed a dense skip-connection with cross co-attention in U-Net to solve the semantic gaps for an accurate automatic medical image segmentation. We name our method MCA-UNet, which enjoys two benefits: (1) it has a strong ability to model the multi-scale features, and (2) it jointly explores the spatial and channel attentions. The experimental results on the COVID-19 and IDRiD datasets suggest that our MCA-UNet produces more precise segmentation performance for the consolidation, ground-glass opacity (GGO), microaneurysms (MA) and hard exudates (EX). The source code of this work will be released via https://github.com/McGregorWwww/MCA-UNet/.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884736/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00209-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00209-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

由于医学图像中感染或病变的形状、大小和位置的高度变化,医学图像分割是一项具有挑战性的任务。有必要构建多尺度表示来捕获来自不同尺度的图像内容。然而,对于具有简单跳过连接的U-Net来说,对全局多尺度上下文进行建模仍然具有挑战性。为了克服这一问题,我们在U-Net中提出了一种具有交叉共同注意的密集跳跃连接,以解决精确自动医学图像分割的语义缺口。我们将我们的方法命名为MCA-UNet,它有两个好处:(1)它具有很强的多尺度特征建模能力,以及(2)它联合探索了空间和通道注意力。新冠肺炎和IDRiD数据集的实验结果表明,我们的MCA-UNet对固结、基质不透明(GGO)、微血管瘤(MA)和硬渗出物(EX)产生了更精确的分割性能。本作品的源代码将通过https://github.com/McGregorWwww/MCA-UNet/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation.

MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation.

MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation.

MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation.

Medical image segmentation is a challenging task due to the high variation in shape, size and position of infections or lesions in medical images. It is necessary to construct multi-scale representations to capture image contents from different scales. However, it is still challenging for U-Net with a simple skip connection to model the global multi-scale context. To overcome it, we proposed a dense skip-connection with cross co-attention in U-Net to solve the semantic gaps for an accurate automatic medical image segmentation. We name our method MCA-UNet, which enjoys two benefits: (1) it has a strong ability to model the multi-scale features, and (2) it jointly explores the spatial and channel attentions. The experimental results on the COVID-19 and IDRiD datasets suggest that our MCA-UNet produces more precise segmentation performance for the consolidation, ground-glass opacity (GGO), microaneurysms (MA) and hard exudates (EX). The source code of this work will be released via https://github.com/McGregorWwww/MCA-UNet/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信