在基于代理的注射吸毒者模型中进行消除丙型肝炎的多目标模型探索。

Eric Tatara, Nicholson T Collier, Jonathan Ozik, Alexander Gutfraind, Scott J Cotler, Harel Dahari, Marian Major, Basmattee Boodram
{"title":"在基于代理的注射吸毒者模型中进行消除丙型肝炎的多目标模型探索。","authors":"Eric Tatara, Nicholson T Collier, Jonathan Ozik, Alexander Gutfraind, Scott J Cotler, Harel Dahari, Marian Major, Basmattee Boodram","doi":"10.1109/wsc40007.2019.9004747","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2019 ","pages":"1008-1019"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335458/pdf/nihms-1604171.pdf","citationCount":"0","resultStr":"{\"title\":\"MULTI-OBJECTIVE MODEL EXPLORATION OF HEPATITIS C ELIMINATION IN AN AGENT-BASED MODEL OF PEOPLE WHO INJECT DRUGS.\",\"authors\":\"Eric Tatara, Nicholson T Collier, Jonathan Ozik, Alexander Gutfraind, Scott J Cotler, Harel Dahari, Marian Major, Basmattee Boodram\",\"doi\":\"10.1109/wsc40007.2019.9004747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.</p>\",\"PeriodicalId\":74535,\"journal\":{\"name\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"volume\":\"2019 \",\"pages\":\"1008-1019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335458/pdf/nihms-1604171.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wsc40007.2019.9004747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wsc40007.2019.9004747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

丙型肝炎(HCV)是全球慢性肝病和死亡的主要原因,注射吸毒者(PWID)感染和传播 HCV 的风险最高。我们开发了一个基于代理的模型(ABM)来确定和优化直接作用抗病毒疗法(DAA)的推广和治疗策略,以实现世界卫生组织(WHO)到 2030 年消除丙型肝炎病毒的目标。虽然 DAA 疗效显著,但价格昂贵,因此干预策略应在消除目标和干预成本之间取得平衡。在此,我们介绍并比较了两种通过标准模型参数扫描来寻找 PWID 治疗注册策略的方法,并将结果与进化多目标优化算法进行了比较。进化法提供了一组可使治疗成本和发病率最小化的帕累托最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MULTI-OBJECTIVE MODEL EXPLORATION OF HEPATITIS C ELIMINATION IN AN AGENT-BASED MODEL OF PEOPLE WHO INJECT DRUGS.

Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信