{"title":"肺纤维化中肺泡巨噬细胞死亡的调控:综述。","authors":"Ganghao Yang, Yang Yang, Yiping Liu, Xiaoshu Liu","doi":"10.1007/s10495-023-01888-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.</p></div>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":"28 11-12","pages":"1505 - 1519"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of alveolar macrophage death in pulmonary fibrosis: a review\",\"authors\":\"Ganghao Yang, Yang Yang, Yiping Liu, Xiaoshu Liu\",\"doi\":\"10.1007/s10495-023-01888-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.</p></div>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\"28 11-12\",\"pages\":\"1505 - 1519\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10495-023-01888-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10495-023-01888-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of alveolar macrophage death in pulmonary fibrosis: a review
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.