Gelfand-Shilov空间s - αβ的泛函解析表征

S.J.L. van Eijndhoven
{"title":"Gelfand-Shilov空间s - αβ的泛函解析表征","authors":"S.J.L. van Eijndhoven","doi":"10.1016/S1385-7258(87)80035-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let P denote the differentiation operator <em>i d/dx</em> and <em>%plane1D;4AC;</em> the operator of multiplication by <em>x</em> in <em>L</em><sub>2</sub>(ℝ). With suitable domains the operators <em>P</em> and <em>%plane1D;4AC;</em> are self-adjoint. In this paper, characterizations of the space <em>S</em><sub>α</sub><sup>β</sup> of Gelfand and Shilov are derived in terms of the operators <em>P</em> and <em>%plane1D;4AC;</em>. The main result is that <em>S</em><sub>α</sub>=D<sup>ω</sup>(|Q|<sup>1/α</sup>)∩ D<sup>∞</sup>(<em>P</em>), <em>S</em><sup>β</sup> = <em>D</em><sup>∞</sup>(<em>%plane1D;4AC;</em>)<em>D</em><sup>ω</sup>(|<em>P</em>|<sup>1/β</sup>) and <em>S</em><sub>α</sub><sup>β</sup> = <em>D</em><sup>ω</sup>(|<em>%plane1D;4AC;</em>|<sup>1/β</sup>) ∩ ∩ <em>D</em><sup>ω</sup> (|<em>P</em>|<sup>1/β</sup>. Here <em>D</em><sup>∞</sup>(·) denote the <em>C</em><sup>∞</sup> - and the analyticity domain of the operator between brackets.</p><p>In ZBuRe], Burkill et al. introduce the test function space <em>T</em>. Our results imply that <em>T</em> = <sub>1/2</sub><sup>1/2</sup>. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 133-144"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80035-5","citationCount":"23","resultStr":"{\"title\":\"Functional analytic characterizations of the Gelfand-Shilov spaces Sαβ\",\"authors\":\"S.J.L. van Eijndhoven\",\"doi\":\"10.1016/S1385-7258(87)80035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let P denote the differentiation operator <em>i d/dx</em> and <em>%plane1D;4AC;</em> the operator of multiplication by <em>x</em> in <em>L</em><sub>2</sub>(ℝ). With suitable domains the operators <em>P</em> and <em>%plane1D;4AC;</em> are self-adjoint. In this paper, characterizations of the space <em>S</em><sub>α</sub><sup>β</sup> of Gelfand and Shilov are derived in terms of the operators <em>P</em> and <em>%plane1D;4AC;</em>. The main result is that <em>S</em><sub>α</sub>=D<sup>ω</sup>(|Q|<sup>1/α</sup>)∩ D<sup>∞</sup>(<em>P</em>), <em>S</em><sup>β</sup> = <em>D</em><sup>∞</sup>(<em>%plane1D;4AC;</em>)<em>D</em><sup>ω</sup>(|<em>P</em>|<sup>1/β</sup>) and <em>S</em><sub>α</sub><sup>β</sup> = <em>D</em><sup>ω</sup>(|<em>%plane1D;4AC;</em>|<sup>1/β</sup>) ∩ ∩ <em>D</em><sup>ω</sup> (|<em>P</em>|<sup>1/β</sup>. Here <em>D</em><sup>∞</sup>(·) denote the <em>C</em><sup>∞</sup> - and the analyticity domain of the operator between brackets.</p><p>In ZBuRe], Burkill et al. introduce the test function space <em>T</em>. Our results imply that <em>T</em> = <sub>1/2</sub><sup>1/2</sup>. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 2\",\"pages\":\"Pages 133-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80035-5\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

令P表示微分算子i d/dx和%plane1D;在L2(x)中乘以x的算子。在合适的域下,算子P和%plane1D;4AC;自伴的。本文导出了Gelfand和Shilov空间Sαβ的算子P和%plane1D;4AC;的刻画。主要结果是,年代α= Dω(Q | | 1 /α)∩D∞(P), Sβ= D∞(% plane1D; 4 ac) Dω(| | 1页/β)和Sαβ= Dω(| % plane1D; 4 ac; | 1 /β)∩∩Dω(| | 1页/β。这里D∞(·)表示C∞-和括号之间算子的解析域。在[zure]中,Burkill等人引入了测试函数空间T,我们的结果表明T = 1/2 /2。即广义函数的对应空间可以与De Bruijn [ZBr1]中引入的广义函数空间等同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional analytic characterizations of the Gelfand-Shilov spaces Sαβ

Let P denote the differentiation operator i d/dx and %plane1D;4AC; the operator of multiplication by x in L2(ℝ). With suitable domains the operators P and %plane1D;4AC; are self-adjoint. In this paper, characterizations of the space Sαβ of Gelfand and Shilov are derived in terms of the operators P and %plane1D;4AC;. The main result is that Sα=Dω(|Q|1/α)∩ D(P), Sβ = D(%plane1D;4AC;)Dω(|P|1/β) and Sαβ = Dω(|%plane1D;4AC;|1/β) ∩ ∩ Dω (|P|1/β. Here D(·) denote the C - and the analyticity domain of the operator between brackets.

In ZBuRe], Burkill et al. introduce the test function space T. Our results imply that T = 1/21/2. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信