{"title":"Gelfand-Shilov空间s - αβ的泛函解析表征","authors":"S.J.L. van Eijndhoven","doi":"10.1016/S1385-7258(87)80035-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let P denote the differentiation operator <em>i d/dx</em> and <em>%plane1D;4AC;</em> the operator of multiplication by <em>x</em> in <em>L</em><sub>2</sub>(ℝ). With suitable domains the operators <em>P</em> and <em>%plane1D;4AC;</em> are self-adjoint. In this paper, characterizations of the space <em>S</em><sub>α</sub><sup>β</sup> of Gelfand and Shilov are derived in terms of the operators <em>P</em> and <em>%plane1D;4AC;</em>. The main result is that <em>S</em><sub>α</sub>=D<sup>ω</sup>(|Q|<sup>1/α</sup>)∩ D<sup>∞</sup>(<em>P</em>), <em>S</em><sup>β</sup> = <em>D</em><sup>∞</sup>(<em>%plane1D;4AC;</em>)<em>D</em><sup>ω</sup>(|<em>P</em>|<sup>1/β</sup>) and <em>S</em><sub>α</sub><sup>β</sup> = <em>D</em><sup>ω</sup>(|<em>%plane1D;4AC;</em>|<sup>1/β</sup>) ∩ ∩ <em>D</em><sup>ω</sup> (|<em>P</em>|<sup>1/β</sup>. Here <em>D</em><sup>∞</sup>(·) denote the <em>C</em><sup>∞</sup> - and the analyticity domain of the operator between brackets.</p><p>In ZBuRe], Burkill et al. introduce the test function space <em>T</em>. Our results imply that <em>T</em> = <sub>1/2</sub><sup>1/2</sup>. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 133-144"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80035-5","citationCount":"23","resultStr":"{\"title\":\"Functional analytic characterizations of the Gelfand-Shilov spaces Sαβ\",\"authors\":\"S.J.L. van Eijndhoven\",\"doi\":\"10.1016/S1385-7258(87)80035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let P denote the differentiation operator <em>i d/dx</em> and <em>%plane1D;4AC;</em> the operator of multiplication by <em>x</em> in <em>L</em><sub>2</sub>(ℝ). With suitable domains the operators <em>P</em> and <em>%plane1D;4AC;</em> are self-adjoint. In this paper, characterizations of the space <em>S</em><sub>α</sub><sup>β</sup> of Gelfand and Shilov are derived in terms of the operators <em>P</em> and <em>%plane1D;4AC;</em>. The main result is that <em>S</em><sub>α</sub>=D<sup>ω</sup>(|Q|<sup>1/α</sup>)∩ D<sup>∞</sup>(<em>P</em>), <em>S</em><sup>β</sup> = <em>D</em><sup>∞</sup>(<em>%plane1D;4AC;</em>)<em>D</em><sup>ω</sup>(|<em>P</em>|<sup>1/β</sup>) and <em>S</em><sub>α</sub><sup>β</sup> = <em>D</em><sup>ω</sup>(|<em>%plane1D;4AC;</em>|<sup>1/β</sup>) ∩ ∩ <em>D</em><sup>ω</sup> (|<em>P</em>|<sup>1/β</sup>. Here <em>D</em><sup>∞</sup>(·) denote the <em>C</em><sup>∞</sup> - and the analyticity domain of the operator between brackets.</p><p>In ZBuRe], Burkill et al. introduce the test function space <em>T</em>. Our results imply that <em>T</em> = <sub>1/2</sub><sup>1/2</sup>. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 2\",\"pages\":\"Pages 133-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80035-5\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional analytic characterizations of the Gelfand-Shilov spaces Sαβ
Let P denote the differentiation operator i d/dx and %plane1D;4AC; the operator of multiplication by x in L2(ℝ). With suitable domains the operators P and %plane1D;4AC; are self-adjoint. In this paper, characterizations of the space Sαβ of Gelfand and Shilov are derived in terms of the operators P and %plane1D;4AC;. The main result is that Sα=Dω(|Q|1/α)∩ D∞(P), Sβ = D∞(%plane1D;4AC;)Dω(|P|1/β) and Sαβ = Dω(|%plane1D;4AC;|1/β) ∩ ∩ Dω (|P|1/β. Here D∞(·) denote the C∞ - and the analyticity domain of the operator between brackets.
In ZBuRe], Burkill et al. introduce the test function space T. Our results imply that T = 1/21/2. That is, the corresponding space of generalized functions can be identified with the space of generalized functions introduced by De Bruijn in ZBr1].