Filip Stefanovic, Andres Gomez-Caminero, David M Jacobs, Poornima Subramanian, Igor Puzanov, Maya R Chilbert, Steven G Feuerstein, Yan Yatsynovich, Benjamin Switzer, Jerome J Schentag
{"title":"检查点抑制剂相关心肌炎和类固醇反应的神经网络建模。","authors":"Filip Stefanovic, Andres Gomez-Caminero, David M Jacobs, Poornima Subramanian, Igor Puzanov, Maya R Chilbert, Steven G Feuerstein, Yan Yatsynovich, Benjamin Switzer, Jerome J Schentag","doi":"10.2147/CPAA.S369008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Serious but rare side effects associated with immunotherapy pose a difficult problem for regulators and practitioners. Immune checkpoint inhibitors (ICIs) have come into widespread use in oncology in recent years and are associated with rare cardiotoxicity, including potentially fatal myocarditis. To date, no comprehensive model of myocarditis progression and outcomes integrating time-series based laboratory and clinical signals has been constructed. In this paper, we describe a time-series neural net (NN) model of ICI-related myocarditis derived using supervised machine learning.</p><p><strong>Methods: </strong>We extracted and modeled data from electronic medical records of ICI-treated patients who had an elevation in their troponin. All data collection was performed using an electronic case report form, with approximately 300 variables collected on as many occasions as available, yielding 6000 data elements per patient over their clinical course. Key variables were scored 0-5 and sequential assessments were used to construct the model. The NN model was developed in MatLab and applied to analyze the time course and outcomes of treatments.</p><p><strong>Results: </strong>We identified 23 patients who had troponin elevations related to their ICI therapy, 15 of whom had ICI-related myocarditis, while the remaining 8 patients on ICIs had other causes for troponin elevation, such as myocardial infarction. Our model showed that troponin was the most predictive biomarker of myocarditis, in line with prior studies. Our model also identified early and aggressive use of steroid treatment as a major determinant of survival for cases of grade 3 or 4 ICI-related myocarditis.</p><p><strong>Conclusion: </strong>Our study shows that a supervised learning NN can be used to model rare events such as ICI-related myocarditis and thus provide clinical insight into drivers of progression and treatment outcomes. These findings direct attention to early detection biomarkers and clinical symptoms as the best means of implementing early and potentially life-saving steroid treatment.</p>","PeriodicalId":10406,"journal":{"name":"Clinical Pharmacology : Advances and Applications","volume":"14 ","pages":"69-90"},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/8c/cpaa-14-69.PMC9376002.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural Net Modeling of Checkpoint Inhibitor Related Myocarditis and Steroid Response.\",\"authors\":\"Filip Stefanovic, Andres Gomez-Caminero, David M Jacobs, Poornima Subramanian, Igor Puzanov, Maya R Chilbert, Steven G Feuerstein, Yan Yatsynovich, Benjamin Switzer, Jerome J Schentag\",\"doi\":\"10.2147/CPAA.S369008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Serious but rare side effects associated with immunotherapy pose a difficult problem for regulators and practitioners. Immune checkpoint inhibitors (ICIs) have come into widespread use in oncology in recent years and are associated with rare cardiotoxicity, including potentially fatal myocarditis. To date, no comprehensive model of myocarditis progression and outcomes integrating time-series based laboratory and clinical signals has been constructed. In this paper, we describe a time-series neural net (NN) model of ICI-related myocarditis derived using supervised machine learning.</p><p><strong>Methods: </strong>We extracted and modeled data from electronic medical records of ICI-treated patients who had an elevation in their troponin. All data collection was performed using an electronic case report form, with approximately 300 variables collected on as many occasions as available, yielding 6000 data elements per patient over their clinical course. Key variables were scored 0-5 and sequential assessments were used to construct the model. The NN model was developed in MatLab and applied to analyze the time course and outcomes of treatments.</p><p><strong>Results: </strong>We identified 23 patients who had troponin elevations related to their ICI therapy, 15 of whom had ICI-related myocarditis, while the remaining 8 patients on ICIs had other causes for troponin elevation, such as myocardial infarction. Our model showed that troponin was the most predictive biomarker of myocarditis, in line with prior studies. Our model also identified early and aggressive use of steroid treatment as a major determinant of survival for cases of grade 3 or 4 ICI-related myocarditis.</p><p><strong>Conclusion: </strong>Our study shows that a supervised learning NN can be used to model rare events such as ICI-related myocarditis and thus provide clinical insight into drivers of progression and treatment outcomes. These findings direct attention to early detection biomarkers and clinical symptoms as the best means of implementing early and potentially life-saving steroid treatment.</p>\",\"PeriodicalId\":10406,\"journal\":{\"name\":\"Clinical Pharmacology : Advances and Applications\",\"volume\":\"14 \",\"pages\":\"69-90\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/8c/cpaa-14-69.PMC9376002.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology : Advances and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/CPAA.S369008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology : Advances and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/CPAA.S369008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Neural Net Modeling of Checkpoint Inhibitor Related Myocarditis and Steroid Response.
Background: Serious but rare side effects associated with immunotherapy pose a difficult problem for regulators and practitioners. Immune checkpoint inhibitors (ICIs) have come into widespread use in oncology in recent years and are associated with rare cardiotoxicity, including potentially fatal myocarditis. To date, no comprehensive model of myocarditis progression and outcomes integrating time-series based laboratory and clinical signals has been constructed. In this paper, we describe a time-series neural net (NN) model of ICI-related myocarditis derived using supervised machine learning.
Methods: We extracted and modeled data from electronic medical records of ICI-treated patients who had an elevation in their troponin. All data collection was performed using an electronic case report form, with approximately 300 variables collected on as many occasions as available, yielding 6000 data elements per patient over their clinical course. Key variables were scored 0-5 and sequential assessments were used to construct the model. The NN model was developed in MatLab and applied to analyze the time course and outcomes of treatments.
Results: We identified 23 patients who had troponin elevations related to their ICI therapy, 15 of whom had ICI-related myocarditis, while the remaining 8 patients on ICIs had other causes for troponin elevation, such as myocardial infarction. Our model showed that troponin was the most predictive biomarker of myocarditis, in line with prior studies. Our model also identified early and aggressive use of steroid treatment as a major determinant of survival for cases of grade 3 or 4 ICI-related myocarditis.
Conclusion: Our study shows that a supervised learning NN can be used to model rare events such as ICI-related myocarditis and thus provide clinical insight into drivers of progression and treatment outcomes. These findings direct attention to early detection biomarkers and clinical symptoms as the best means of implementing early and potentially life-saving steroid treatment.