基于全局到局部特征融合的边缘导向生成对抗网络医学图像翻译。

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Hamed Amini Amirkolaee, Hamid Amini Amirkolaee
{"title":"基于全局到局部特征融合的边缘导向生成对抗网络医学图像翻译。","authors":"Hamed Amini Amirkolaee,&nbsp;Hamid Amini Amirkolaee","doi":"10.7555/JBR.36.20220037","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"36 6","pages":"409-422"},"PeriodicalIF":2.2000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724158/pdf/","citationCount":"3","resultStr":"{\"title\":\"Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.\",\"authors\":\"Hamed Amini Amirkolaee,&nbsp;Hamid Amini Amirkolaee\",\"doi\":\"10.7555/JBR.36.20220037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.</p>\",\"PeriodicalId\":15061,\"journal\":{\"name\":\"Journal of Biomedical Research\",\"volume\":\"36 6\",\"pages\":\"409-422\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724158/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7555/JBR.36.20220037\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.36.20220037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种基于深度学习的框架,用于使用成对和非成对训练数据进行医学图像翻译。首先,提出了一种具有编码器-解码器结构的深度神经网络,用于使用成对训练数据进行图像到图像的翻译。然后使用多尺度上下文聚合方法从不同层次的编码中提取各种特征,并在相应的网络解码阶段使用这些特征。在这一点上,我们进一步提出了一种基于未配对训练数据的边缘引导生成对抗网络用于图像到图像的翻译。利用边缘约束损失函数提高网络在组织边界处的性能。为了分析框架的性能,我们进行了五种不同的医学图像翻译任务。评估表明,所提出的深度学习框架带来了超越最先进水平的重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.

Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.

Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.

Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.

In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Research
Journal of Biomedical Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
4.60
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信