海洋玫瑰杆菌系Ruegeria sp. YS9与5个红藻质粒的全基因组序列分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qun-Jian Yin , Fang-Chao Zhu , Hong-Zhi Tang , Xu-Yang Chen , Xin Liu , Li-Chang Tang , Xue-Gong Li
{"title":"海洋玫瑰杆菌系Ruegeria sp. YS9与5个红藻质粒的全基因组序列分析","authors":"Qun-Jian Yin ,&nbsp;Fang-Chao Zhu ,&nbsp;Hong-Zhi Tang ,&nbsp;Xu-Yang Chen ,&nbsp;Xin Liu ,&nbsp;Li-Chang Tang ,&nbsp;Xue-Gong Li","doi":"10.1016/j.margen.2022.100997","DOIUrl":null,"url":null,"abstract":"<div><p><em>Ruegeria</em> sp. YS9, an aerobic and chemoheterotrophic bacterium belonging to marine <em>Roseobacter</em> lineage, was a putative new species isolated from red algae <em>Eucheuma okamurai</em> in the South China Sea (Beihai, Guangxi province). The complete genome sequence in strain YS9 comprised one circular chromosome with 3,244,635 bp and five circular plasmids ranging from 38,085 to 748,160 bp, with a total length of 4.30 Mb and average GC content of 58.39%. In total, 4129 CDSs, 52 tRNA genes and 9 rRNA genes were obtained. Genomic analysis of strain YS9 revealed that 85 CAZymes were organized in 147 PUL-associated CAZymes involved in polysaccharides metabolism, which were the highest among its two closely related <em>Ruegeria</em> strains. Numerous PULs related to degradation on the cell wall of algae, especially agar, indicated its major player role in the remineralization of algal-derived carbon. Further, the existence of multiple plasmids provided strain YS9 with distinct advantages to facilitate its rapid environmental adaptation, including polysaccharide metabolism, denitrification, resistance to heavy metal stresses such as copper and cobalt, type IV secretion systems and type IV toxin-antitoxin systems, which were obviously different from the two <em>Ruegeria</em> strains. This study provides evidence for polysaccharide metabolic capacity and functions of five plasmids in strain YS9, broadening our understanding of the ecological roles of bacteria in the environment around red algae and the function patterns of plasmids in marine <em>Roseobacter</em> lineage members for environmental adaptation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of marine Roseobacter lineage member Ruegeria sp. YS9 with five plasmids isolated from red algae\",\"authors\":\"Qun-Jian Yin ,&nbsp;Fang-Chao Zhu ,&nbsp;Hong-Zhi Tang ,&nbsp;Xu-Yang Chen ,&nbsp;Xin Liu ,&nbsp;Li-Chang Tang ,&nbsp;Xue-Gong Li\",\"doi\":\"10.1016/j.margen.2022.100997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Ruegeria</em> sp. YS9, an aerobic and chemoheterotrophic bacterium belonging to marine <em>Roseobacter</em> lineage, was a putative new species isolated from red algae <em>Eucheuma okamurai</em> in the South China Sea (Beihai, Guangxi province). The complete genome sequence in strain YS9 comprised one circular chromosome with 3,244,635 bp and five circular plasmids ranging from 38,085 to 748,160 bp, with a total length of 4.30 Mb and average GC content of 58.39%. In total, 4129 CDSs, 52 tRNA genes and 9 rRNA genes were obtained. Genomic analysis of strain YS9 revealed that 85 CAZymes were organized in 147 PUL-associated CAZymes involved in polysaccharides metabolism, which were the highest among its two closely related <em>Ruegeria</em> strains. Numerous PULs related to degradation on the cell wall of algae, especially agar, indicated its major player role in the remineralization of algal-derived carbon. Further, the existence of multiple plasmids provided strain YS9 with distinct advantages to facilitate its rapid environmental adaptation, including polysaccharide metabolism, denitrification, resistance to heavy metal stresses such as copper and cobalt, type IV secretion systems and type IV toxin-antitoxin systems, which were obviously different from the two <em>Ruegeria</em> strains. This study provides evidence for polysaccharide metabolic capacity and functions of five plasmids in strain YS9, broadening our understanding of the ecological roles of bacteria in the environment around red algae and the function patterns of plasmids in marine <em>Roseobacter</em> lineage members for environmental adaptation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000757\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000757","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Ruegeria sp.YS9是从南海(广西北海)的红藻Eucheuma okamurai中分离得到的一个新物种,属于海洋玫瑰菌谱系中的一个需氧和化学异养细菌。YS9菌株的全基因组序列由一条3244635bp的环状染色体和5个38085-748160bp的环状质粒组成,全长4.30Mb,平均GC含量为58.39%,共获得4129个CDSs、52个tRNA基因和9个rRNA基因。菌株YS9的基因组分析显示,147个参与多糖代谢的PUL相关CAZymes中组织了85个CAZyme,这是其两个密切相关的Ruegeria菌株中最高的。许多与藻类细胞壁降解有关的PUL,特别是琼脂,表明其在藻类衍生碳的再矿化中发挥着重要作用。此外,多质粒的存在为菌株YS9的快速环境适应提供了明显的优势,包括多糖代谢、反硝化作用、对铜和钴等重金属胁迫的抗性、IV型分泌系统和IV型毒素抗毒素系统,这与两个Ruegeria菌株明显不同。本研究为菌株YS9中五种质粒的多糖代谢能力和功能提供了证据,拓宽了我们对细菌在红藻周围环境中的生态作用以及质粒在海洋玫瑰菌谱系成员中适应环境的功能模式的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete genome sequence of marine Roseobacter lineage member Ruegeria sp. YS9 with five plasmids isolated from red algae

Ruegeria sp. YS9, an aerobic and chemoheterotrophic bacterium belonging to marine Roseobacter lineage, was a putative new species isolated from red algae Eucheuma okamurai in the South China Sea (Beihai, Guangxi province). The complete genome sequence in strain YS9 comprised one circular chromosome with 3,244,635 bp and five circular plasmids ranging from 38,085 to 748,160 bp, with a total length of 4.30 Mb and average GC content of 58.39%. In total, 4129 CDSs, 52 tRNA genes and 9 rRNA genes were obtained. Genomic analysis of strain YS9 revealed that 85 CAZymes were organized in 147 PUL-associated CAZymes involved in polysaccharides metabolism, which were the highest among its two closely related Ruegeria strains. Numerous PULs related to degradation on the cell wall of algae, especially agar, indicated its major player role in the remineralization of algal-derived carbon. Further, the existence of multiple plasmids provided strain YS9 with distinct advantages to facilitate its rapid environmental adaptation, including polysaccharide metabolism, denitrification, resistance to heavy metal stresses such as copper and cobalt, type IV secretion systems and type IV toxin-antitoxin systems, which were obviously different from the two Ruegeria strains. This study provides evidence for polysaccharide metabolic capacity and functions of five plasmids in strain YS9, broadening our understanding of the ecological roles of bacteria in the environment around red algae and the function patterns of plasmids in marine Roseobacter lineage members for environmental adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信