{"title":"部分相干光在线相位调制产生光学涡旋晶格。","authors":"Allarakha Shikder, Naveen K Nishchal","doi":"10.1364/JOSAA.489469","DOIUrl":null,"url":null,"abstract":"<p><p>Of late, generation of different kinds of optical vortex lattices has been gaining much attention due to various applications. Several methods have been reported for the generation of optical vortex lattices using a coherent light source involving interferometric, diffractive, and pinhole phase plate methods. Owing to cost effectiveness and ease in optical implementation, these days use of incoherent or partially coherent light beams is becoming popular. In this study, we demonstrate generation of different kinds of optical vortex lattices through in-line modulation of phase distributions employing the phase concatenation approach and a light-emitting diode as a light source. It is a non-interferometric and flexible technique for the selection of the parameters that characterize the optical vortices and their arrays. The proposed method allows generation of an array of optical vortices of different topological charges with zero and non-zero radial indices having different symmetries.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of optical vortex lattices by in-line phase modulation with partially coherent light.\",\"authors\":\"Allarakha Shikder, Naveen K Nishchal\",\"doi\":\"10.1364/JOSAA.489469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Of late, generation of different kinds of optical vortex lattices has been gaining much attention due to various applications. Several methods have been reported for the generation of optical vortex lattices using a coherent light source involving interferometric, diffractive, and pinhole phase plate methods. Owing to cost effectiveness and ease in optical implementation, these days use of incoherent or partially coherent light beams is becoming popular. In this study, we demonstrate generation of different kinds of optical vortex lattices through in-line modulation of phase distributions employing the phase concatenation approach and a light-emitting diode as a light source. It is a non-interferometric and flexible technique for the selection of the parameters that characterize the optical vortices and their arrays. The proposed method allows generation of an array of optical vortices of different topological charges with zero and non-zero radial indices having different symmetries.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.489469\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.489469","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Generation of optical vortex lattices by in-line phase modulation with partially coherent light.
Of late, generation of different kinds of optical vortex lattices has been gaining much attention due to various applications. Several methods have been reported for the generation of optical vortex lattices using a coherent light source involving interferometric, diffractive, and pinhole phase plate methods. Owing to cost effectiveness and ease in optical implementation, these days use of incoherent or partially coherent light beams is becoming popular. In this study, we demonstrate generation of different kinds of optical vortex lattices through in-line modulation of phase distributions employing the phase concatenation approach and a light-emitting diode as a light source. It is a non-interferometric and flexible technique for the selection of the parameters that characterize the optical vortices and their arrays. The proposed method allows generation of an array of optical vortices of different topological charges with zero and non-zero radial indices having different symmetries.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.