Yujie Li , Susu Wang , Qianqian Shan , Xingxing Xia
{"title":"Singleton效应在时间压力下减弱:一项fNIRS研究。","authors":"Yujie Li , Susu Wang , Qianqian Shan , Xingxing Xia","doi":"10.1016/j.bandc.2023.106074","DOIUrl":null,"url":null,"abstract":"<div><p>Time pressure affects multiple cognitive processes but how it affects attention capture remains unclear. Two experiments were carried out in the present study to assess whether time pressure prevents attention from capturing by salient distractors and explore the underlying neural mechanisms using functional near-infrared spectroscopy. The results of behavioral tests showed that the singleton effect decreased (Experiment 2) or even disappeared (Experiment 1) when the subject was under time pressure. Neuroimaging data showed that under time pressure, a salient distractor elicited greater activation in the left middle frontal gyrus/inferior frontal gyrus and bilateral superior parietal lobule, brain areas that are thought to be involved in cognitive inhibition and control of spatial attentional shifts. These findings suggest that the reduction or disappearance of the singleton effect under time pressure results from enhanced inhibition of and/or accelerated disengagement from salient distractors.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"171 ","pages":"Article 106074"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singleton effect decreases under time pressure: An fNIRS study\",\"authors\":\"Yujie Li , Susu Wang , Qianqian Shan , Xingxing Xia\",\"doi\":\"10.1016/j.bandc.2023.106074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Time pressure affects multiple cognitive processes but how it affects attention capture remains unclear. Two experiments were carried out in the present study to assess whether time pressure prevents attention from capturing by salient distractors and explore the underlying neural mechanisms using functional near-infrared spectroscopy. The results of behavioral tests showed that the singleton effect decreased (Experiment 2) or even disappeared (Experiment 1) when the subject was under time pressure. Neuroimaging data showed that under time pressure, a salient distractor elicited greater activation in the left middle frontal gyrus/inferior frontal gyrus and bilateral superior parietal lobule, brain areas that are thought to be involved in cognitive inhibition and control of spatial attentional shifts. These findings suggest that the reduction or disappearance of the singleton effect under time pressure results from enhanced inhibition of and/or accelerated disengagement from salient distractors.</p></div>\",\"PeriodicalId\":55331,\"journal\":{\"name\":\"Brain and Cognition\",\"volume\":\"171 \",\"pages\":\"Article 106074\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278262623001318\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262623001318","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Singleton effect decreases under time pressure: An fNIRS study
Time pressure affects multiple cognitive processes but how it affects attention capture remains unclear. Two experiments were carried out in the present study to assess whether time pressure prevents attention from capturing by salient distractors and explore the underlying neural mechanisms using functional near-infrared spectroscopy. The results of behavioral tests showed that the singleton effect decreased (Experiment 2) or even disappeared (Experiment 1) when the subject was under time pressure. Neuroimaging data showed that under time pressure, a salient distractor elicited greater activation in the left middle frontal gyrus/inferior frontal gyrus and bilateral superior parietal lobule, brain areas that are thought to be involved in cognitive inhibition and control of spatial attentional shifts. These findings suggest that the reduction or disappearance of the singleton effect under time pressure results from enhanced inhibition of and/or accelerated disengagement from salient distractors.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.