光遗传抑制颅内后皮层谷氨酸能神经元可调节 CCI-ION 大鼠的三叉神经痛

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2023-12-01 Epub Date: 2023-09-12 DOI:10.1007/s12017-023-08752-3
Jaisan Islam, Elina Kc, Soochong Kim, Moon Young Chung, Ki Seok Park, Hyong Kyu Kim, Young Seok Park
{"title":"光遗传抑制颅内后皮层谷氨酸能神经元可调节 CCI-ION 大鼠的三叉神经痛","authors":"Jaisan Islam, Elina Kc, Soochong Kim, Moon Young Chung, Ki Seok Park, Hyong Kyu Kim, Young Seok Park","doi":"10.1007/s12017-023-08752-3","DOIUrl":null,"url":null,"abstract":"<p><p>In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both \"ON\" and \"OFF\" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat.\",\"authors\":\"Jaisan Islam, Elina Kc, Soochong Kim, Moon Young Chung, Ki Seok Park, Hyong Kyu Kim, Young Seok Park\",\"doi\":\"10.1007/s12017-023-08752-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both \\\"ON\\\" and \\\"OFF\\\" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-023-08752-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08752-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究发现,慢性神经病理性疼痛患者的后岛叶皮层(PIC)的谷氨酸能活动增加,而后岛叶皮层的颗粒下部分(DPIC)被认为是调节疼痛的新型皮层靶点。然而,DPIC 谷氨酸能神经元(DPICg)在三叉神经痛(TNP)中的作用仍不清楚。在此,我们研究了在眶下神经慢性收缩性损伤(CCI-ION)大鼠模型中抑制 DPICg 的结果。动物被随机分为 TNP 组、假组和对照组。TNP 动物接受 CCI-ION 手术。向 TNP 动物和假动物的对侧 DPICg 注射光遗传病毒或无效病毒。在 "开 "和 "关 "两种刺激状态下,从同侧脊髓三叉神经尾核(TNC)和对侧丘脑腹侧后部(VPM)获得体内单细胞外记录。考察了刺激-关闭和刺激-开启阶段的行为反应。还观察了 c-Fos、pERK 和 CREB 免疫阳性神经元的表达。光遗传抑制对侧DPICg降低了TNC和VPM丘脑的神经发射率、感觉反应细胞体的表达以及TNP组DPIC的转录因子。在刺激-开启条件下,还观察到 TNP 动物的过痛、异痛和焦虑样反应有所改善。总之,降序疼痛处理受到从DPIC到疼痛基质区的神经解剖学投射的影响,而DPICg可能在这一神经回路中发挥了必要的作用。因此,本研究中抑制DPICg的抗痛觉效应可能为DPICg在TNP中的治疗潜力提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat.

Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat.

In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both "ON" and "OFF" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信