SPiP:剪接预测管道,一个机器学习工具,用于大量检测外显子和内含子变异对mRNA剪接的影响

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Raphaël Leman, Béatrice Parfait, Dominique Vidaud, Emmanuelle Girodon, Laurence Pacot, Gérald Le Gac, Chandran Ka, Claude Ferec, Yann Fichou, Céline Quesnelle, Camille Aucouturier, Etienne Muller, Dominique Vaur, Laurent Castera, Flavie Boulouard, Agathe Ricou, Hélène Tubeuf, Omar Soukarieh, Pascaline Gaildrat, Florence Riant, Marine Guillaud-Bataille, Sandrine M. Caputo, Virginie Caux-Moncoutier, Nadia Boutry-Kryza, Françoise Bonnet-Dorion, Ines Schultz, Maria Rossing, Olivier Quenez, Louis Goldenberg, Valentin Harter, Michael T. Parsons, Amanda B. Spurdle, Thierry Frébourg, Alexandra Martins, Claude Houdayer, Sophie Krieger
{"title":"SPiP:剪接预测管道,一个机器学习工具,用于大量检测外显子和内含子变异对mRNA剪接的影响","authors":"Raphaël Leman,&nbsp;Béatrice Parfait,&nbsp;Dominique Vidaud,&nbsp;Emmanuelle Girodon,&nbsp;Laurence Pacot,&nbsp;Gérald Le Gac,&nbsp;Chandran Ka,&nbsp;Claude Ferec,&nbsp;Yann Fichou,&nbsp;Céline Quesnelle,&nbsp;Camille Aucouturier,&nbsp;Etienne Muller,&nbsp;Dominique Vaur,&nbsp;Laurent Castera,&nbsp;Flavie Boulouard,&nbsp;Agathe Ricou,&nbsp;Hélène Tubeuf,&nbsp;Omar Soukarieh,&nbsp;Pascaline Gaildrat,&nbsp;Florence Riant,&nbsp;Marine Guillaud-Bataille,&nbsp;Sandrine M. Caputo,&nbsp;Virginie Caux-Moncoutier,&nbsp;Nadia Boutry-Kryza,&nbsp;Françoise Bonnet-Dorion,&nbsp;Ines Schultz,&nbsp;Maria Rossing,&nbsp;Olivier Quenez,&nbsp;Louis Goldenberg,&nbsp;Valentin Harter,&nbsp;Michael T. Parsons,&nbsp;Amanda B. Spurdle,&nbsp;Thierry Frébourg,&nbsp;Alexandra Martins,&nbsp;Claude Houdayer,&nbsp;Sophie Krieger","doi":"10.1002/humu.24491","DOIUrl":null,"url":null,"abstract":"<p>Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5′/3′ splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/humu.24491","citationCount":"17","resultStr":"{\"title\":\"SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing\",\"authors\":\"Raphaël Leman,&nbsp;Béatrice Parfait,&nbsp;Dominique Vidaud,&nbsp;Emmanuelle Girodon,&nbsp;Laurence Pacot,&nbsp;Gérald Le Gac,&nbsp;Chandran Ka,&nbsp;Claude Ferec,&nbsp;Yann Fichou,&nbsp;Céline Quesnelle,&nbsp;Camille Aucouturier,&nbsp;Etienne Muller,&nbsp;Dominique Vaur,&nbsp;Laurent Castera,&nbsp;Flavie Boulouard,&nbsp;Agathe Ricou,&nbsp;Hélène Tubeuf,&nbsp;Omar Soukarieh,&nbsp;Pascaline Gaildrat,&nbsp;Florence Riant,&nbsp;Marine Guillaud-Bataille,&nbsp;Sandrine M. Caputo,&nbsp;Virginie Caux-Moncoutier,&nbsp;Nadia Boutry-Kryza,&nbsp;Françoise Bonnet-Dorion,&nbsp;Ines Schultz,&nbsp;Maria Rossing,&nbsp;Olivier Quenez,&nbsp;Louis Goldenberg,&nbsp;Valentin Harter,&nbsp;Michael T. Parsons,&nbsp;Amanda B. Spurdle,&nbsp;Thierry Frébourg,&nbsp;Alexandra Martins,&nbsp;Claude Houdayer,&nbsp;Sophie Krieger\",\"doi\":\"10.1002/humu.24491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5′/3′ splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/humu.24491\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/humu.24491\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/humu.24491","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 17

摘要

剪接建模对于解决变异解释的挑战至关重要,因为每个核苷酸变异都可能通过剪接基序(如5 ' /3 '剪接位点、分支位点或剪接调控元件)的破坏/产生而影响前mrna剪接,从而具有致病性。不幸的是,大多数硅工具都集中在特定类型的剪接基序上,这就是为什么我们开发了剪接预测管道(splicing Prediction Pipeline, SPiP),在基于机器学习方法的单一生物信息学分析中,对不同剪接基序的变异效应进行全面评估。我们收集了分布在227个基因序列上的4616个变异,并对它们进行了相应的剪接研究。贝叶斯分析为我们提供了控制变异的数量,即不影响剪接的变异,以模拟高通量测序数据中的大量变异。结果表明,SPiP可以处理剪接改变的多样性,检测剪接变异的灵敏度为83.13%,特异性为99%。以接收算子曲线下面积衡量的总体性能为0.986,优于SpliceAI和SQUIRLS(0.965和0.766)。SPiP使其成为基因组医学时代剪接原性综合预测的独特套件。SPiP可在:https://sourceforge.net/projects/splicing-prediction-pipeline/上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing

SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5′/3′ splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信