Francisca C. Venegas, Ricardo Sánchez-Rodríguez, Roberto Luisetto, Roberta Angioni, Antonella Viola, Marcella Canton
{"title":"线粒体单胺氧化酶 B 的氧化应激介导焦磷酸钙晶体诱发的关节炎","authors":"Francisca C. Venegas, Ricardo Sánchez-Rodríguez, Roberto Luisetto, Roberta Angioni, Antonella Viola, Marcella Canton","doi":"10.1002/art.42697","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>Calcium pyrophosphate (CPP) crystal deposition in the joints is associated with a heterogeneous set of debilitating syndromes characterized by inflammation and pain, for which no effective therapies are currently available. Because we found that the mitochondrial enzyme monoamine oxidase B (MAO-B) plays a fundamental role in promoting inflammatory pathways, this study aims at assessing the efficacy of two clinical-grade inhibitors (iMAO-Bs) in preclinical models of this disease to pave the way for a novel treatment.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We tested our hypothesis in two murine models of CPP-induced arthritis, by measuring cytokine and chemokine levels, along with immune cell recruitment. iMAO-Bs (rasagiline and safinamide) were administered either before or after crystal injection. To elucidate the molecular mechanism, we challenged in vitro primed macrophages with CPP crystals and assessed the impact of iMAO-Bs in dampening proinflammatory cytokines and in preserving mitochondrial function.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Both in preventive and therapeutic in vivo protocols, iMAO-Bs blunted the release of proinflammatory cytokines (interleukin [IL]-6 and IL1-β) and chemokines (CXCL10, CXCL1, CCL2 and CCL5) (n > 6 mice/group). Importantly, they also significantly reduced ankle swelling (50.3% vs 17.1%; <i>P</i> < 0.001 and 23.1%; <i>P</i> = 0.005 for rasagiline and safinamide, respectively). Mechanistically, iMAO-Bs dampened the burst of reactive oxygen species and the mitochondrial dysfunction triggered by CPP crystals in isolated macrophages. Moreover, iMAO-Bs blunted cytokine secretion and NLRP3 inflammasome activation through inhibition of the NF-κB and STAT3 pathways.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <div>iMAO-Bs dampen inflammation in murine models of crystal-induced arthropathy, thereby uncovering MAO-B as a promising target to treat these diseases.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </div>\n </section>\n </div>","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":"76 2","pages":"279-284"},"PeriodicalIF":11.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/art.42697","citationCount":"0","resultStr":"{\"title\":\"Oxidative Stress by the Mitochondrial Monoamine Oxidase B Mediates Calcium Pyrophosphate Crystal–Induced Arthritis\",\"authors\":\"Francisca C. Venegas, Ricardo Sánchez-Rodríguez, Roberto Luisetto, Roberta Angioni, Antonella Viola, Marcella Canton\",\"doi\":\"10.1002/art.42697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Calcium pyrophosphate (CPP) crystal deposition in the joints is associated with a heterogeneous set of debilitating syndromes characterized by inflammation and pain, for which no effective therapies are currently available. Because we found that the mitochondrial enzyme monoamine oxidase B (MAO-B) plays a fundamental role in promoting inflammatory pathways, this study aims at assessing the efficacy of two clinical-grade inhibitors (iMAO-Bs) in preclinical models of this disease to pave the way for a novel treatment.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We tested our hypothesis in two murine models of CPP-induced arthritis, by measuring cytokine and chemokine levels, along with immune cell recruitment. iMAO-Bs (rasagiline and safinamide) were administered either before or after crystal injection. To elucidate the molecular mechanism, we challenged in vitro primed macrophages with CPP crystals and assessed the impact of iMAO-Bs in dampening proinflammatory cytokines and in preserving mitochondrial function.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Both in preventive and therapeutic in vivo protocols, iMAO-Bs blunted the release of proinflammatory cytokines (interleukin [IL]-6 and IL1-β) and chemokines (CXCL10, CXCL1, CCL2 and CCL5) (n > 6 mice/group). Importantly, they also significantly reduced ankle swelling (50.3% vs 17.1%; <i>P</i> < 0.001 and 23.1%; <i>P</i> = 0.005 for rasagiline and safinamide, respectively). Mechanistically, iMAO-Bs dampened the burst of reactive oxygen species and the mitochondrial dysfunction triggered by CPP crystals in isolated macrophages. Moreover, iMAO-Bs blunted cytokine secretion and NLRP3 inflammasome activation through inhibition of the NF-κB and STAT3 pathways.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <div>iMAO-Bs dampen inflammation in murine models of crystal-induced arthropathy, thereby uncovering MAO-B as a promising target to treat these diseases.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":129,\"journal\":{\"name\":\"Arthritis & Rheumatology\",\"volume\":\"76 2\",\"pages\":\"279-284\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/art.42697\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthritis & Rheumatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/art.42697\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis & Rheumatology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/art.42697","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Oxidative Stress by the Mitochondrial Monoamine Oxidase B Mediates Calcium Pyrophosphate Crystal–Induced Arthritis
Objective
Calcium pyrophosphate (CPP) crystal deposition in the joints is associated with a heterogeneous set of debilitating syndromes characterized by inflammation and pain, for which no effective therapies are currently available. Because we found that the mitochondrial enzyme monoamine oxidase B (MAO-B) plays a fundamental role in promoting inflammatory pathways, this study aims at assessing the efficacy of two clinical-grade inhibitors (iMAO-Bs) in preclinical models of this disease to pave the way for a novel treatment.
Methods
We tested our hypothesis in two murine models of CPP-induced arthritis, by measuring cytokine and chemokine levels, along with immune cell recruitment. iMAO-Bs (rasagiline and safinamide) were administered either before or after crystal injection. To elucidate the molecular mechanism, we challenged in vitro primed macrophages with CPP crystals and assessed the impact of iMAO-Bs in dampening proinflammatory cytokines and in preserving mitochondrial function.
Results
Both in preventive and therapeutic in vivo protocols, iMAO-Bs blunted the release of proinflammatory cytokines (interleukin [IL]-6 and IL1-β) and chemokines (CXCL10, CXCL1, CCL2 and CCL5) (n > 6 mice/group). Importantly, they also significantly reduced ankle swelling (50.3% vs 17.1%; P < 0.001 and 23.1%; P = 0.005 for rasagiline and safinamide, respectively). Mechanistically, iMAO-Bs dampened the burst of reactive oxygen species and the mitochondrial dysfunction triggered by CPP crystals in isolated macrophages. Moreover, iMAO-Bs blunted cytokine secretion and NLRP3 inflammasome activation through inhibition of the NF-κB and STAT3 pathways.
Conclusion
iMAO-Bs dampen inflammation in murine models of crystal-induced arthropathy, thereby uncovering MAO-B as a promising target to treat these diseases.
期刊介绍:
Arthritis & Rheumatology is the official journal of the American College of Rheumatology and focuses on the natural history, pathophysiology, treatment, and outcome of rheumatic diseases. It is a peer-reviewed publication that aims to provide the highest quality basic and clinical research in this field. The journal covers a wide range of investigative areas and also includes review articles, editorials, and educational material for researchers and clinicians. Being recognized as a leading research journal in rheumatology, Arthritis & Rheumatology serves the global community of rheumatology investigators and clinicians.