AutoCaSc:优选神经发育障碍的候选基因。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Johann Kaspar Lieberwirth, Benjamin Büttner, Chiara Klöckner, Konrad Platzer, Bernt Popp, Rami Abou Jamra
{"title":"AutoCaSc:优选神经发育障碍的候选基因。","authors":"Johann Kaspar Lieberwirth,&nbsp;Benjamin Büttner,&nbsp;Chiara Klöckner,&nbsp;Konrad Platzer,&nbsp;Bernt Popp,&nbsp;Rami Abou Jamra","doi":"10.1002/humu.24451","DOIUrl":null,"url":null,"abstract":"<p><p>Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"AutoCaSc: Prioritizing candidate genes for neurodevelopmental disorders.\",\"authors\":\"Johann Kaspar Lieberwirth,&nbsp;Benjamin Büttner,&nbsp;Chiara Klöckner,&nbsp;Konrad Platzer,&nbsp;Bernt Popp,&nbsp;Rami Abou Jamra\",\"doi\":\"10.1002/humu.24451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/humu.24451\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/humu.24451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

摘要

神经发育障碍(NDD)患者的常规外显子组测序(ES)在>50%的病例中仍然没有定论。对未解决病例的研究分析可以确定新的候选基因,但耗时、主观,而且难以在实验室之间进行比较。因此,该领域需要自动化和标准化的评估方法来优先考虑配对的候选人。我们根据候选评分方案开发了AutoCaSc (https://autocasc.uni-leipzig.de)。我们使用合成三重奏和真实的内部三重奏ES数据验证了我们的方法。AutoCaSc一致(占所有病例的94.5%)将有效的新型NDD基因的相关变异评分在前三名中。在93个真实的三人外显子组中,AutoCaSc识别了大多数(97.5%)先前手工评分的变异,同时评估了手工评估中遗漏的其他高分变异。该研究发现了先前描述的NDD候选基因(CNTN2、DLGAP1、SMURF1、NRXN3和PRICKLE1)的候选变异。AutoCaSc使任何人都能够快速筛选NDD中的变体的合理性。在提供了超过40个ndd相关基因的描述后,我们根据我们丰富的经验提供了使用建议。我们的实现能够管道整合,因此允许筛选候选基因的大队列。AutoCaSc使小型实验室能够进行标准化的配对协作,并为持续识别新的NDD实体做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoCaSc: Prioritizing candidate genes for neurodevelopmental disorders.

Routine exome sequencing (ES) in individuals with neurodevelopmental disorders (NDD) remains inconclusive in >50% of the cases. Research analysis of unsolved cases can identify novel candidate genes but is time-consuming, subjective, and hard to compare between labs. The field, therefore, requires automated and standardized assessment methods to prioritize candidates for matchmaking. We developed AutoCaSc (https://autocasc.uni-leipzig.de) based on our candidate scoring scheme. We validated our approach using synthetic trios and real in-house trio ES data. AutoCaSc consistently (94.5% of all cases) scored the relevant variants in valid novel NDD genes in the top three ranks. In 93 real trio exomes, AutoCaSc identified most (97.5%) previously manually scored variants while evaluating additional high-scoring variants missed in manual evaluation. It identified candidate variants in previously undescribed NDD candidate genes (CNTN2, DLGAP1, SMURF1, NRXN3, and PRICKLE1). AutoCaSc enables anybody to quickly screen a variant for its plausibility in NDD. After contributing >40 descriptions of NDD-associated genes, we provide usage recommendations based on our extensive experience. Our implementation is capable of pipeline integration and therefore allows the screening of large cohorts for candidate genes. AutoCaSc empowers even small labs to a standardized matchmaking collaboration and to contribute to the ongoing identification of novel NDD entities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信