Sareh Panjeh, Anders Nordahl-Hansen, Hugo Cogo-Moreira
{"title":"为Cohen’s d建立新的截止点:一个应用程序,利用从改善睡眠质量的综合心理健康试验中获得的已知效应量","authors":"Sareh Panjeh, Anders Nordahl-Hansen, Hugo Cogo-Moreira","doi":"10.1002/mpr.1969","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Cohen's <i>d</i> conventional effect size cutoffs [small (0.2), medium (0.5), and large (0.8)] might not be representative of the reported distribution of effect sizes across the different areas of health. Effect size cutoffs might vary not only depending on the area of research, but also on the type of intervention and population. That is, they are context dependent. Therefore, we present strategies to redefine small, medium, and large effect size based on 25, 50, and 75th percentile, respectively.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We illustrate these techniques applying them to 72 effect sizes, derived from 65 randomized controlled trials described in a recent meta-analysis (10.1016/j.smrv.2021.101556) of improving sleep quality on composite mental health. Such percentiles are equally distanced from the average effect size as suggested by Jacob Cohen and checked for potential attenuation effects (via weight selection model) and outliers (via OutRules).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>new cutoffs for effect size distribution of −0.177, −0.329, and −0.557, for small, medium, and large effect size were found, respectively. applying Cohen's effect size thresholds (0.2, 0.5, and 0.8) for trials of improving sleep quality on composite mental health might over-estimate effect sizes compared to the real-world context, especially around medium and large effect sizes.</p>\n </section>\n </div>","PeriodicalId":50310,"journal":{"name":"International Journal of Methods in Psychiatric Research","volume":"32 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/bc/MPR-32-e1969.PMC10485313.pdf","citationCount":"1","resultStr":"{\"title\":\"Establishing new cutoffs for Cohen's d: An application using known effect sizes from trials for improving sleep quality on composite mental health\",\"authors\":\"Sareh Panjeh, Anders Nordahl-Hansen, Hugo Cogo-Moreira\",\"doi\":\"10.1002/mpr.1969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Cohen's <i>d</i> conventional effect size cutoffs [small (0.2), medium (0.5), and large (0.8)] might not be representative of the reported distribution of effect sizes across the different areas of health. Effect size cutoffs might vary not only depending on the area of research, but also on the type of intervention and population. That is, they are context dependent. Therefore, we present strategies to redefine small, medium, and large effect size based on 25, 50, and 75th percentile, respectively.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We illustrate these techniques applying them to 72 effect sizes, derived from 65 randomized controlled trials described in a recent meta-analysis (10.1016/j.smrv.2021.101556) of improving sleep quality on composite mental health. Such percentiles are equally distanced from the average effect size as suggested by Jacob Cohen and checked for potential attenuation effects (via weight selection model) and outliers (via OutRules).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>new cutoffs for effect size distribution of −0.177, −0.329, and −0.557, for small, medium, and large effect size were found, respectively. applying Cohen's effect size thresholds (0.2, 0.5, and 0.8) for trials of improving sleep quality on composite mental health might over-estimate effect sizes compared to the real-world context, especially around medium and large effect sizes.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50310,\"journal\":{\"name\":\"International Journal of Methods in Psychiatric Research\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/bc/MPR-32-e1969.PMC10485313.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Methods in Psychiatric Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mpr.1969\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Methods in Psychiatric Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mpr.1969","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Establishing new cutoffs for Cohen's d: An application using known effect sizes from trials for improving sleep quality on composite mental health
Objective
Cohen's d conventional effect size cutoffs [small (0.2), medium (0.5), and large (0.8)] might not be representative of the reported distribution of effect sizes across the different areas of health. Effect size cutoffs might vary not only depending on the area of research, but also on the type of intervention and population. That is, they are context dependent. Therefore, we present strategies to redefine small, medium, and large effect size based on 25, 50, and 75th percentile, respectively.
Methods
We illustrate these techniques applying them to 72 effect sizes, derived from 65 randomized controlled trials described in a recent meta-analysis (10.1016/j.smrv.2021.101556) of improving sleep quality on composite mental health. Such percentiles are equally distanced from the average effect size as suggested by Jacob Cohen and checked for potential attenuation effects (via weight selection model) and outliers (via OutRules).
Results
new cutoffs for effect size distribution of −0.177, −0.329, and −0.557, for small, medium, and large effect size were found, respectively. applying Cohen's effect size thresholds (0.2, 0.5, and 0.8) for trials of improving sleep quality on composite mental health might over-estimate effect sizes compared to the real-world context, especially around medium and large effect sizes.
期刊介绍:
The International Journal of Methods in Psychiatric Research (MPR) publishes high-standard original research of a technical, methodological, experimental and clinical nature, contributing to the theory, methodology, practice and evaluation of mental and behavioural disorders. The journal targets in particular detailed methodological and design papers from major national and international multicentre studies. There is a close working relationship with the US National Institute of Mental Health, the World Health Organisation (WHO) Diagnostic Instruments Committees, as well as several other European and international organisations.
MPR aims to publish rapidly articles of highest methodological quality in such areas as epidemiology, biostatistics, generics, psychopharmacology, psychology and the neurosciences. Articles informing about innovative and critical methodological, statistical and clinical issues, including nosology, can be submitted as regular papers and brief reports. Reviews are only occasionally accepted.
MPR seeks to monitor, discuss, influence and improve the standards of mental health and behavioral neuroscience research by providing a platform for rapid publication of outstanding contributions. As a quarterly journal MPR is a major source of information and ideas and is an important medium for students, clinicians and researchers in psychiatry, clinical psychology, epidemiology and the allied disciplines in the mental health field.