{"title":"非等温梯度洗脱液相色谱法的理论研究","authors":"Nazia Rehman, Ayesha Parveen, Shamsul Qamar","doi":"10.1093/chromsci/bmad076","DOIUrl":null,"url":null,"abstract":"<p><p>A two-component model of gradient elution chromatography is investigated to theoretically study the effects of simultaneous variations in temperature and solvent strength on the retention behaviors of elution profiles in thermally insulated liquid chromatographic columns. The gradient elution technique is based on the gradual increase or decrease in eluent strength during the chromatographic operation by varying the composition of the mobile phase. The enthalpy of adsorption is primarily responsible for internal temperature variations inside the column, as heat adsorbs during the adsorption process and releases in the desorption phase. Both types of variations change the propagation speeds of moving pulses inside the column which can lead to better separation of the components and a reduction in the recycling time for the next injection. The equilibrium dispersive model (EDM) coupled with the energy balance equation for temperature and transport equation for the volume fraction of the solvent is utilized to simulate this complex process. The resulting nonlinear model equations are approximated by applying a semi-discrete second-order finite volume scheme. The numerical solutions are used to study the impact of a gradient starting and ending times, volume-fraction of the solvent, solvent strength parameter, the slope of gradient, enthalpy of adsorption, injection temperature, and the ratio of specific heats on the concentration profiles.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Non-Isothermal Gradient Elution Liquid Chromatography.\",\"authors\":\"Nazia Rehman, Ayesha Parveen, Shamsul Qamar\",\"doi\":\"10.1093/chromsci/bmad076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A two-component model of gradient elution chromatography is investigated to theoretically study the effects of simultaneous variations in temperature and solvent strength on the retention behaviors of elution profiles in thermally insulated liquid chromatographic columns. The gradient elution technique is based on the gradual increase or decrease in eluent strength during the chromatographic operation by varying the composition of the mobile phase. The enthalpy of adsorption is primarily responsible for internal temperature variations inside the column, as heat adsorbs during the adsorption process and releases in the desorption phase. Both types of variations change the propagation speeds of moving pulses inside the column which can lead to better separation of the components and a reduction in the recycling time for the next injection. The equilibrium dispersive model (EDM) coupled with the energy balance equation for temperature and transport equation for the volume fraction of the solvent is utilized to simulate this complex process. The resulting nonlinear model equations are approximated by applying a semi-discrete second-order finite volume scheme. The numerical solutions are used to study the impact of a gradient starting and ending times, volume-fraction of the solvent, solvent strength parameter, the slope of gradient, enthalpy of adsorption, injection temperature, and the ratio of specific heats on the concentration profiles.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmad076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmad076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical Study of Non-Isothermal Gradient Elution Liquid Chromatography.
A two-component model of gradient elution chromatography is investigated to theoretically study the effects of simultaneous variations in temperature and solvent strength on the retention behaviors of elution profiles in thermally insulated liquid chromatographic columns. The gradient elution technique is based on the gradual increase or decrease in eluent strength during the chromatographic operation by varying the composition of the mobile phase. The enthalpy of adsorption is primarily responsible for internal temperature variations inside the column, as heat adsorbs during the adsorption process and releases in the desorption phase. Both types of variations change the propagation speeds of moving pulses inside the column which can lead to better separation of the components and a reduction in the recycling time for the next injection. The equilibrium dispersive model (EDM) coupled with the energy balance equation for temperature and transport equation for the volume fraction of the solvent is utilized to simulate this complex process. The resulting nonlinear model equations are approximated by applying a semi-discrete second-order finite volume scheme. The numerical solutions are used to study the impact of a gradient starting and ending times, volume-fraction of the solvent, solvent strength parameter, the slope of gradient, enthalpy of adsorption, injection temperature, and the ratio of specific heats on the concentration profiles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.