{"title":"发酵食品中高产多胺的表皮葡萄球菌FB146的分离及多胺相关基因的鉴定。","authors":"Hideto Shirasawa, Chisato Nishiyama, Rika Hirano, Takashi Koyanagi, Shujiro Okuda, Hiroki Takagi, Shin Kurihara","doi":"10.12938/bmfh.2022-011","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, <i>Staphylococcus epidermidis</i> FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative <i>Staphylococcus</i> species in addition to <i>S. epidermidis</i> FB146, and only <i>S. epidermidis</i> FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of <i>S. epidermidis</i> FB146 was performed, and the ornithine decarboxylase gene (<i>odc</i>), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (<i>potE</i>), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by <i>S. epidermidis</i> FB146.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/6d/bmfh-42-024.PMC9816048.pdf","citationCount":"2","resultStr":"{\"title\":\"Isolation of the high polyamine-producing bacterium <i>Staphylococcus epidermidis</i> FB146 from fermented foods and identification of polyamine-related genes.\",\"authors\":\"Hideto Shirasawa, Chisato Nishiyama, Rika Hirano, Takashi Koyanagi, Shujiro Okuda, Hiroki Takagi, Shin Kurihara\",\"doi\":\"10.12938/bmfh.2022-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, <i>Staphylococcus epidermidis</i> FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative <i>Staphylococcus</i> species in addition to <i>S. epidermidis</i> FB146, and only <i>S. epidermidis</i> FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of <i>S. epidermidis</i> FB146 was performed, and the ornithine decarboxylase gene (<i>odc</i>), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (<i>potE</i>), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by <i>S. epidermidis</i> FB146.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/6d/bmfh-42-024.PMC9816048.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2022-011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.2022-011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Isolation of the high polyamine-producing bacterium Staphylococcus epidermidis FB146 from fermented foods and identification of polyamine-related genes.
It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, Staphylococcus epidermidis FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative Staphylococcus species in addition to S. epidermidis FB146, and only S. epidermidis FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of S. epidermidis FB146 was performed, and the ornithine decarboxylase gene (odc), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (potE), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by S. epidermidis FB146.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.