可解释草药推荐的元路径引导图注意网络。

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS
Health Information Science and Systems Pub Date : 2023-01-18 eCollection Date: 2023-12-01 DOI:10.1007/s13755-022-00207-6
Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang
{"title":"可解释草药推荐的元路径引导图注意网络。","authors":"Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang","doi":"10.1007/s13755-022-00207-6","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"5"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847457/pdf/","citationCount":"4","resultStr":"{\"title\":\"Meta-path guided graph attention network for explainable herb recommendation.\",\"authors\":\"Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang\",\"doi\":\"10.1007/s13755-022-00207-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"5\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847457/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00207-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00207-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 4

摘要

数千年来,中医药在东亚人民的临床实践中被广泛采用。如今,中医药仍然在中国社会中发挥着至关重要的作用,并在世界范围内受到越来越多的关注。现有的草药推荐者通过挖掘中药处方来了解症状与草药之间的复杂关系。给定一组症状,他们将从中医理论中提供一组草药和解释。然而,中医的基础是阴阳学说(即五相学说与阴阳学说的结合),这与现代医学哲学有很大的不同。仅仅从中医理论方面推荐草药,在很大程度上阻碍了中医现代医学的发展。由于中医与现代医学在分子水平上有着共同的观点,因此有必要将中医的古老实践与现代医学的标准相结合。在本文中,我们从中医和现代医学中探索了草药的潜在作用机制,并提出了一个元路径引导的图形注意力网络(MGAT)来提供可解释的草药推荐。从技术上讲,要将中医从经验医学转化为循证医学,我们需要将现代中医的药理学知识与中医知识相结合。我们设计了一种基于扩展知识图的元路径引导信息传播方案,该方案将信息传播和决策过程相结合。该方案采用元路径(预定义的关系序列)来指导传播过程中的邻居选择。此外,注意力机制被用于聚合,以帮助区分连接症状和草药的不同路径的显著性。通过这种方式,我们的模型可以沿着元路径提取长程语义,并生成细粒度的解释。我们在公共中药数据集上进行了广泛的实验,证明了与最先进的草药推荐模型相当的性能和强大的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Meta-path guided graph attention network for explainable herb recommendation.

Meta-path guided graph attention network for explainable herb recommendation.

Meta-path guided graph attention network for explainable herb recommendation.

Meta-path guided graph attention network for explainable herb recommendation.

Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信