Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang
{"title":"可解释草药推荐的元路径引导图注意网络。","authors":"Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang","doi":"10.1007/s13755-022-00207-6","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"5"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847457/pdf/","citationCount":"4","resultStr":"{\"title\":\"Meta-path guided graph attention network for explainable herb recommendation.\",\"authors\":\"Yuanyuan Jin, Wendi Ji, Yao Shi, Xiaoling Wang, Xiaochun Yang\",\"doi\":\"10.1007/s13755-022-00207-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"5\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847457/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00207-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00207-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Meta-path guided graph attention network for explainable herb recommendation.
Traditional Chinese Medicine (TCM) has been widely adopted in clinical practice by Eastern Asia people for thousands of years. Nowadays, TCM still plays a critical role in Chinese society and receives increasing attention worldwide. The existing herb recommenders learn the complex relations between symptoms and herbs by mining the TCM prescriptions. Given a set of symptoms, they will provide a set of herbs and explanations from the TCM theory. However, the foundation of TCM is Yinyangism (i.e. the combination of Five Phases theory with Yin-yang theory), which is very different from modern medicine philosophy. Only recommending herbs from the TCM theory aspect largely prevents TCM from modern medical treatment. As TCM and modern medicine share a common view at the molecular level, it is necessary to integrate the ancient practice of TCM and standards of modern medicine. In this paper, we explore the underlying action mechanisms of herbs from both TCM and modern medicine, and propose a Meta-path guided Graph Attention Network (MGAT) to provide the explainable herb recommendations. Technically, to translate TCM from an experience-based medicine to an evidence-based medicine system, we incorporate the pharmacology knowledge of modern Chinese medicine with the TCM knowledge. We design a meta-path guided information propagation scheme based on the extended knowledge graph, which combines information propagation and decision process. This scheme adopts meta-paths (predefined relation sequences) to guide neighbor selection in the propagation process. Furthermore, the attention mechanism is utilized in aggregation to help distinguish the salience of different paths connecting a symptom with a herb. In this way, our model can distill the long-range semantics along meta-paths and generate fine-grained explanations. We conduct extensive experiments on a public TCM dataset, demonstrating comparable performance to the state-of-the-art herb recommendation models and the strong explainability.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.