{"title":"通过高通量分子诊断方法在两名罹患晚期婴幼儿变色性白质营养不良症的女孩身上发现新型 ARSA 基因突变","authors":"Abolfazl Yari, Farzane Vafaeie, Zahra Miri Karam, Mahya Hosseini, Hassan Hashemzade, Maryam Sadat Rahimi, Alireza Ehsanbakhsh, Ebrahim Miri-Moghaddam","doi":"10.1007/s12017-023-08757-y","DOIUrl":null,"url":null,"abstract":"<p><p>Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a Novel ARSA Gene Mutation Through High-Throughput Molecular Diagnosis Method in Two Girls with Late Infantile Metachromatic Leukodystrophy.\",\"authors\":\"Abolfazl Yari, Farzane Vafaeie, Zahra Miri Karam, Mahya Hosseini, Hassan Hashemzade, Maryam Sadat Rahimi, Alireza Ehsanbakhsh, Ebrahim Miri-Moghaddam\",\"doi\":\"10.1007/s12017-023-08757-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-023-08757-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08757-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Identification of a Novel ARSA Gene Mutation Through High-Throughput Molecular Diagnosis Method in Two Girls with Late Infantile Metachromatic Leukodystrophy.
Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.