纳米颗粒给药系统药代动力学建模与计算方法研究进展。

Shivang Dhoundiyal, Md Aftab Alam
{"title":"纳米颗粒给药系统药代动力学建模与计算方法研究进展。","authors":"Shivang Dhoundiyal, Md Aftab Alam","doi":"10.2174/2667387817666230907093403","DOIUrl":null,"url":null,"abstract":"<p><p>Generally, therapeutic drugs have issues like poor solubility, rapid removal from the bloodstream, lack of targeting, and an inability to translocate across cell membranes. Some of these barriers can be overcome by using nano drug delivery systems (DDS), which results in more efficient drug delivery to the site of action. Due to their potential application as drug delivery systems, nanoparticles are the main topic of discussion in this article. Experimental and computational investigations have substantially aided in the understanding of how nanocarriers work and how they interact with medications, biomembranes and other biological components. This review explores how computational modelling can aid in the rational design of DDS that has been optimized and improved upon. The most commonly used simulation methods for studying DDS and some of the most important biophysical elements of DDS are also discussed. Then, we conclude by investigating the computational properties of various types of nanocarriers, such as dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, carbon-based DDS, and gold nanoparticles.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Pharmacokinetic Modelling and Computational Approaches for Nanoparticles in Drug Delivery Systems.\",\"authors\":\"Shivang Dhoundiyal, Md Aftab Alam\",\"doi\":\"10.2174/2667387817666230907093403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generally, therapeutic drugs have issues like poor solubility, rapid removal from the bloodstream, lack of targeting, and an inability to translocate across cell membranes. Some of these barriers can be overcome by using nano drug delivery systems (DDS), which results in more efficient drug delivery to the site of action. Due to their potential application as drug delivery systems, nanoparticles are the main topic of discussion in this article. Experimental and computational investigations have substantially aided in the understanding of how nanocarriers work and how they interact with medications, biomembranes and other biological components. This review explores how computational modelling can aid in the rational design of DDS that has been optimized and improved upon. The most commonly used simulation methods for studying DDS and some of the most important biophysical elements of DDS are also discussed. Then, we conclude by investigating the computational properties of various types of nanocarriers, such as dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, carbon-based DDS, and gold nanoparticles.</p>\",\"PeriodicalId\":20955,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2667387817666230907093403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2667387817666230907093403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,治疗药物存在溶解度差、从血液中快速移除、缺乏靶向性和无法跨细胞膜转运等问题。其中一些障碍可以通过使用纳米药物递送系统(DDS)来克服,从而使药物更有效地递送到作用部位。由于纳米颗粒作为药物传递系统的潜在应用,它们是本文讨论的主要主题。实验和计算研究极大地帮助理解纳米载体如何工作,以及它们如何与药物、生物膜和其他生物成分相互作用。这篇综述探讨了计算建模如何有助于优化和改进DDS的合理设计。本文还讨论了研究DDS最常用的模拟方法和DDS中一些最重要的生物物理元素。然后,我们通过研究各种类型的纳米载体,如树突和树突,聚合物,肽,核酸,脂质,碳基DDS和金纳米颗粒的计算性质来结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Pharmacokinetic Modelling and Computational Approaches for Nanoparticles in Drug Delivery Systems.

Generally, therapeutic drugs have issues like poor solubility, rapid removal from the bloodstream, lack of targeting, and an inability to translocate across cell membranes. Some of these barriers can be overcome by using nano drug delivery systems (DDS), which results in more efficient drug delivery to the site of action. Due to their potential application as drug delivery systems, nanoparticles are the main topic of discussion in this article. Experimental and computational investigations have substantially aided in the understanding of how nanocarriers work and how they interact with medications, biomembranes and other biological components. This review explores how computational modelling can aid in the rational design of DDS that has been optimized and improved upon. The most commonly used simulation methods for studying DDS and some of the most important biophysical elements of DDS are also discussed. Then, we conclude by investigating the computational properties of various types of nanocarriers, such as dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, carbon-based DDS, and gold nanoparticles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信