Andréia Ávila Soares de Oliveira , Luiz Carlos Vieira , Sônia Carvalho Dreossi , Daniel Junqueira Dorta , Carlos Gravato , Márcia Eliana da Silva Ferreira , Danielle Palma de Oliveira
{"title":"整合形态学、生物化学、行为学和分子方法,研究tebuthiuron对斑马鱼(Danio rerio)的发育毒性。","authors":"Andréia Ávila Soares de Oliveira , Luiz Carlos Vieira , Sônia Carvalho Dreossi , Daniel Junqueira Dorta , Carlos Gravato , Márcia Eliana da Silva Ferreira , Danielle Palma de Oliveira","doi":"10.1016/j.chemosphere.2023.139894","DOIUrl":null,"url":null,"abstract":"<div><p>Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (<em>Danio rerio</em>), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 μg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (<em>elavl3</em>, <em>gfap</em>, <em>gap43,</em> and <em>shha</em><span>) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding – after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2–20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.</span></p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"340 ","pages":"Article 139894"},"PeriodicalIF":8.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating morphological, biochemical, behavioural, and molecular approaches to investigate developmental toxicity triggered by tebuthiuron in zebrafish (Danio rerio)\",\"authors\":\"Andréia Ávila Soares de Oliveira , Luiz Carlos Vieira , Sônia Carvalho Dreossi , Daniel Junqueira Dorta , Carlos Gravato , Márcia Eliana da Silva Ferreira , Danielle Palma de Oliveira\",\"doi\":\"10.1016/j.chemosphere.2023.139894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (<em>Danio rerio</em>), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 μg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (<em>elavl3</em>, <em>gfap</em>, <em>gap43,</em> and <em>shha</em><span>) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding – after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2–20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.</span></p></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"340 \",\"pages\":\"Article 139894\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004565352302163X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004565352302163X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrating morphological, biochemical, behavioural, and molecular approaches to investigate developmental toxicity triggered by tebuthiuron in zebrafish (Danio rerio)
Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 μg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding – after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2–20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.