从互补科学角度预测蛋白质结构。

IF 4.9 Q1 BIOPHYSICS
Biophysical reviews Pub Date : 2023-08-04 eCollection Date: 2023-08-01 DOI:10.1007/s12551-023-01107-z
Jorge A Vila
{"title":"从互补科学角度预测蛋白质结构。","authors":"Jorge A Vila","doi":"10.1007/s12551-023-01107-z","DOIUrl":null,"url":null,"abstract":"<p><p>A comparative analysis between two problems-apparently unrelated-which are solved in a period of ~400 years, viz., the accurate prediction of both the planetary orbits and the protein structures, leads to inferred conjectures that go far beyond the existence of a common path in their resolution, i.e., observation → pattern recognition → modeling. The preliminary results from this analysis indicate that complementary science, together with a new perspective on protein folding, may help us discover common features that could contribute to a more in-depth understanding of still-unsolved problems such as protein folding.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein structure prediction from the complementary science perspective.\",\"authors\":\"Jorge A Vila\",\"doi\":\"10.1007/s12551-023-01107-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comparative analysis between two problems-apparently unrelated-which are solved in a period of ~400 years, viz., the accurate prediction of both the planetary orbits and the protein structures, leads to inferred conjectures that go far beyond the existence of a common path in their resolution, i.e., observation → pattern recognition → modeling. The preliminary results from this analysis indicate that complementary science, together with a new perspective on protein folding, may help us discover common features that could contribute to a more in-depth understanding of still-unsolved problems such as protein folding.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-023-01107-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01107-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对在大约 400 年时间内解决的两个看似毫不相关的问题(即准确预测行星轨道和蛋白质结构)进行比较分析,得出的推断猜想远远超出了解决这两个问题的共同路径,即观察→模式识别→建模。这一分析的初步结果表明,互补科学以及蛋白质折叠的新视角可能有助于我们发现共同特征,从而有助于更深入地理解蛋白质折叠等仍未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein structure prediction from the complementary science perspective.

A comparative analysis between two problems-apparently unrelated-which are solved in a period of ~400 years, viz., the accurate prediction of both the planetary orbits and the protein structures, leads to inferred conjectures that go far beyond the existence of a common path in their resolution, i.e., observation → pattern recognition → modeling. The preliminary results from this analysis indicate that complementary science, together with a new perspective on protein folding, may help us discover common features that could contribute to a more in-depth understanding of still-unsolved problems such as protein folding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信