Mie Riisom, Stephen M F Jamieson, Christian G Hartinger
{"title":"癌症细胞中金属药物研究的细胞裂解方法的关键评估。","authors":"Mie Riisom, Stephen M F Jamieson, Christian G Hartinger","doi":"10.1093/mtomcs/mfad048","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical evaluation of cell lysis methods for metallodrug studies in cancer cells.\",\"authors\":\"Mie Riisom, Stephen M F Jamieson, Christian G Hartinger\",\"doi\":\"10.1093/mtomcs/mfad048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad048\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Critical evaluation of cell lysis methods for metallodrug studies in cancer cells.
Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.