癌症细胞中金属药物研究的细胞裂解方法的关键评估。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metallomics Pub Date : 2023-09-05 DOI:10.1093/mtomcs/mfad048
Mie Riisom, Stephen M F Jamieson, Christian G Hartinger
{"title":"癌症细胞中金属药物研究的细胞裂解方法的关键评估。","authors":"Mie Riisom,&nbsp;Stephen M F Jamieson,&nbsp;Christian G Hartinger","doi":"10.1093/mtomcs/mfad048","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical evaluation of cell lysis methods for metallodrug studies in cancer cells.\",\"authors\":\"Mie Riisom,&nbsp;Stephen M F Jamieson,&nbsp;Christian G Hartinger\",\"doi\":\"10.1093/mtomcs/mfad048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad048\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞内积累研究是金属药物开发的关键步骤,但通常会获得不同的结果。因此,我们在此旨在研究癌症细胞的有效和可重复裂解的不同方案,包括裂解物中的蛋白质含量和Ru抗癌复合物[氯代(8-羟基喹啉)(η6-烯)钌(II)]([Ru(cym)(HQ)Cl])的细胞摄取研究。选择渗透和超声处理的物理裂解方法与放射免疫沉淀分析(RIPA)缓冲液的化学裂解进行比较。基于裂解物中积累的蛋白质含量和总Ru,后者使用电感耦合等离子体质谱法测定,RIPA缓冲液是最有效的裂解方法。对塑料吸附坯料的测量表明,在RIPA缓冲液裂解样品中测定的较高Ru含量可能是由于与渗透和超声处理相比,从塑料培养板中提取的Ru量较高。总的来说,我们发现裂解方法的选择需要与所寻求的信息相匹配,我们认为破坏性最小的渗透方法可能是不稳定药物生物分子加合物的最佳选择。在旨在测量Ru复合物的整体细胞摄取的实验中发现了最小的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical evaluation of cell lysis methods for metallodrug studies in cancer cells.

Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信