{"title":"Adama医院医学院患者肾衰时间建模:Copula模型的应用。","authors":"Firomsa Shewa, Selamawit Endale, Gurmessa Nugussu, Jaleta Abdisa, Ketema Zerihun, Akalu Banbeta","doi":"10.34172/jrhs.2022.84","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kidney failure is a common public health problem around the world. The vast majority of kidney failure cases in Sub-Saharan African nations, including Ethiopia, go undetected and untreated, resulting in practically certain mortality cases. This study was aimed primarily to model the time to (right and left) kidneys failure in the patients at Adama Hospital Medical College using the copula model.</p><p><strong>Study design: </strong>A retrospective cohort study.</p><p><strong>Methods: </strong>The copula model was used to examine join time to the right and left kidneys failure in the patients by specifying the dependence between the failure times. We employed Weibull, Gompertz, and Log-logistic marginal baseline distributions with Clayton, Gumbel, and Joe Archimedean copula families.</p><p><strong>Results: </strong>This research comprised a total of 431 patients, out of which, 170 (39.4%) of the total patients failed at least one kidney during the follow-up period. Factors such as sex, age, family history of kidney disease, diabetes mellitus, hypertension, and obesity were found to be the most predictive variables for kidney failure in the patients. There was a 41 percent correlation between the patients' time to the right and left kidneys failure.</p><p><strong>Conclusion: </strong>The patients' kidney failure risk factors included being a male, older adult, obese, hypertensive, diabetic and also having a family history of kidney disease. The dependence between the patient's time to the right and left kidneys failure was strong. The best statistical model for describing the kidney failure datasets was the log-logistic-Clayton Archimedean copula model.</p>","PeriodicalId":17164,"journal":{"name":"Journal of research in health sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818037/pdf/","citationCount":"2","resultStr":"{\"title\":\"Time to Kidneys Failure Modeling in the Patients at Adama Hospital Medical College: Application of Copula Model.\",\"authors\":\"Firomsa Shewa, Selamawit Endale, Gurmessa Nugussu, Jaleta Abdisa, Ketema Zerihun, Akalu Banbeta\",\"doi\":\"10.34172/jrhs.2022.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Kidney failure is a common public health problem around the world. The vast majority of kidney failure cases in Sub-Saharan African nations, including Ethiopia, go undetected and untreated, resulting in practically certain mortality cases. This study was aimed primarily to model the time to (right and left) kidneys failure in the patients at Adama Hospital Medical College using the copula model.</p><p><strong>Study design: </strong>A retrospective cohort study.</p><p><strong>Methods: </strong>The copula model was used to examine join time to the right and left kidneys failure in the patients by specifying the dependence between the failure times. We employed Weibull, Gompertz, and Log-logistic marginal baseline distributions with Clayton, Gumbel, and Joe Archimedean copula families.</p><p><strong>Results: </strong>This research comprised a total of 431 patients, out of which, 170 (39.4%) of the total patients failed at least one kidney during the follow-up period. Factors such as sex, age, family history of kidney disease, diabetes mellitus, hypertension, and obesity were found to be the most predictive variables for kidney failure in the patients. There was a 41 percent correlation between the patients' time to the right and left kidneys failure.</p><p><strong>Conclusion: </strong>The patients' kidney failure risk factors included being a male, older adult, obese, hypertensive, diabetic and also having a family history of kidney disease. The dependence between the patient's time to the right and left kidneys failure was strong. The best statistical model for describing the kidney failure datasets was the log-logistic-Clayton Archimedean copula model.</p>\",\"PeriodicalId\":17164,\"journal\":{\"name\":\"Journal of research in health sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818037/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research in health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jrhs.2022.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research in health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jrhs.2022.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Time to Kidneys Failure Modeling in the Patients at Adama Hospital Medical College: Application of Copula Model.
Background: Kidney failure is a common public health problem around the world. The vast majority of kidney failure cases in Sub-Saharan African nations, including Ethiopia, go undetected and untreated, resulting in practically certain mortality cases. This study was aimed primarily to model the time to (right and left) kidneys failure in the patients at Adama Hospital Medical College using the copula model.
Study design: A retrospective cohort study.
Methods: The copula model was used to examine join time to the right and left kidneys failure in the patients by specifying the dependence between the failure times. We employed Weibull, Gompertz, and Log-logistic marginal baseline distributions with Clayton, Gumbel, and Joe Archimedean copula families.
Results: This research comprised a total of 431 patients, out of which, 170 (39.4%) of the total patients failed at least one kidney during the follow-up period. Factors such as sex, age, family history of kidney disease, diabetes mellitus, hypertension, and obesity were found to be the most predictive variables for kidney failure in the patients. There was a 41 percent correlation between the patients' time to the right and left kidneys failure.
Conclusion: The patients' kidney failure risk factors included being a male, older adult, obese, hypertensive, diabetic and also having a family history of kidney disease. The dependence between the patient's time to the right and left kidneys failure was strong. The best statistical model for describing the kidney failure datasets was the log-logistic-Clayton Archimedean copula model.
期刊介绍:
The Journal of Research in Health Sciences (JRHS) is the official journal of the School of Public Health; Hamadan University of Medical Sciences, which is published quarterly. Since 2017, JRHS is published electronically. JRHS is a peer-reviewed, scientific publication which is produced quarterly and is a multidisciplinary journal in the field of public health, publishing contributions from Epidemiology, Biostatistics, Public Health, Occupational Health, Environmental Health, Health Education, and Preventive and Social Medicine. We do not publish clinical trials, nursing studies, animal studies, qualitative studies, nutritional studies, health insurance, and hospital management. In addition, we do not publish the results of laboratory and chemical studies in the field of ergonomics, occupational health, and environmental health