利用脑和胰腺癌类器官构建胰腺癌神经侵袭系统。

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING
Chenyun Song, Xinyu Chen, Jixin Ma, Hada Buhe, Yang Liu, Hexige Saiyin, Lixiang Ma
{"title":"利用脑和胰腺癌类器官构建胰腺癌神经侵袭系统。","authors":"Chenyun Song,&nbsp;Xinyu Chen,&nbsp;Jixin Ma,&nbsp;Hada Buhe,&nbsp;Yang Liu,&nbsp;Hexige Saiyin,&nbsp;Lixiang Ma","doi":"10.1177/20417314221147113","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"14 ","pages":"20417314221147113"},"PeriodicalIF":6.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/ea/10.1177_20417314221147113.PMC9829995.pdf","citationCount":"1","resultStr":"{\"title\":\"Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.\",\"authors\":\"Chenyun Song,&nbsp;Xinyu Chen,&nbsp;Jixin Ma,&nbsp;Hada Buhe,&nbsp;Yang Liu,&nbsp;Hexige Saiyin,&nbsp;Lixiang Ma\",\"doi\":\"10.1177/20417314221147113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.</p>\",\"PeriodicalId\":17384,\"journal\":{\"name\":\"Journal of Tissue Engineering\",\"volume\":\"14 \",\"pages\":\"20417314221147113\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/ea/10.1177_20417314221147113.PMC9829995.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/20417314221147113\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314221147113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

胰腺癌(Pancreatic cancer, PC)是一种发生在人类腹腔的致命恶性肿瘤,它倾向于侵犯周围的神经/神经丛甚至脊柱,造成毁灭性的和难以忍受的疼痛。现有体外模型的局限性限制了揭示疼痛的分子机制和筛选缓解疼痛策略以提高终末期PC患者的生活质量。在这里,我们报道了将人脑类器官(hBrO)与小鼠PC类器官(mPCO)融合的PC神经侵袭模型。在hBrO与mpco合并后,我们对hBrO与mpco的结构串扰、生长模式和相互作用动态进行了7天的监测。7天后,我们还分析了病理生理状态,包括增殖、凋亡和炎症。结果表明,mPCOs倾向于逼近并侵入hBrOs,完全融入hBrOs,并诱导从hBrOs边缘突出的神经元突起的缩回/收缩。mPCOs与hBrOs的接近加速了hBrOs中神经元祖细胞的增殖,加剧了hBrOs中神经元的凋亡,并增加了hBrOs中炎性分子NLRP3、IL-8、IL-1β的表达。我们的系统在小鼠基因工程小鼠模型(GEMM)原发性和人类pc中病理生理上复制了神经侵袭,可能具有应用于揭示神经侵袭的分子机制和筛选pc治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.

Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.

Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.

Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.

Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信