{"title":"通过创新方法检测预知作弊:一种混合层次模型,用于共同建模项目反应、反应时间和视觉注视计数。","authors":"Kaiwen Man, Jeffrey R Harring","doi":"10.1177/00131644221136142","DOIUrl":null,"url":null,"abstract":"<p><p>Preknowledge cheating jeopardizes the validity of inferences based on test results. Many methods have been developed to detect preknowledge cheating by jointly analyzing item responses and response times. Gaze fixations, an essential eye-tracker measure, can be utilized to help detect aberrant testing behavior with improved accuracy beyond using product and process data types in isolation. As such, this study proposes a mixture hierarchical model that integrates item responses, response times, and visual fixation counts collected from an eye-tracker (a) to detect aberrant test takers who have different levels of preknowledge and (b) to account for nuances in behavioral patterns between normally-behaved and aberrant examinees. A Bayesian approach to estimating model parameters is carried out via an MCMC algorithm. Finally, the proposed model is applied to experimental data to illustrate how the model can be used to identify test takers having preknowledge on the test items.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 5","pages":"1059-1080"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470163/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detecting Preknowledge Cheating via Innovative Measures: A Mixture Hierarchical Model for Jointly Modeling Item Responses, Response Times, and Visual Fixation Counts.\",\"authors\":\"Kaiwen Man, Jeffrey R Harring\",\"doi\":\"10.1177/00131644221136142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preknowledge cheating jeopardizes the validity of inferences based on test results. Many methods have been developed to detect preknowledge cheating by jointly analyzing item responses and response times. Gaze fixations, an essential eye-tracker measure, can be utilized to help detect aberrant testing behavior with improved accuracy beyond using product and process data types in isolation. As such, this study proposes a mixture hierarchical model that integrates item responses, response times, and visual fixation counts collected from an eye-tracker (a) to detect aberrant test takers who have different levels of preknowledge and (b) to account for nuances in behavioral patterns between normally-behaved and aberrant examinees. A Bayesian approach to estimating model parameters is carried out via an MCMC algorithm. Finally, the proposed model is applied to experimental data to illustrate how the model can be used to identify test takers having preknowledge on the test items.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"83 5\",\"pages\":\"1059-1080\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221136142\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221136142","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Detecting Preknowledge Cheating via Innovative Measures: A Mixture Hierarchical Model for Jointly Modeling Item Responses, Response Times, and Visual Fixation Counts.
Preknowledge cheating jeopardizes the validity of inferences based on test results. Many methods have been developed to detect preknowledge cheating by jointly analyzing item responses and response times. Gaze fixations, an essential eye-tracker measure, can be utilized to help detect aberrant testing behavior with improved accuracy beyond using product and process data types in isolation. As such, this study proposes a mixture hierarchical model that integrates item responses, response times, and visual fixation counts collected from an eye-tracker (a) to detect aberrant test takers who have different levels of preknowledge and (b) to account for nuances in behavioral patterns between normally-behaved and aberrant examinees. A Bayesian approach to estimating model parameters is carried out via an MCMC algorithm. Finally, the proposed model is applied to experimental data to illustrate how the model can be used to identify test takers having preknowledge on the test items.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.