{"title":"骨科体外实验室感染研究:原因、时间和方式。","authors":"Konstantinos Tsikopoulos, Lorenzo Drago, Gabriele Meroni, Dimitrios Kitridis, Byron Chalidis, Fotios Papageorgiou, Paraskevi Papaioannidou","doi":"10.5312/wjo.v14.i8.598","DOIUrl":null,"url":null,"abstract":"<p><p>The musculoskeletal system involves multiple tissues which are constantly exposed to being exposed to various biological and mechanical stimuli. As such, isolating and studying a particular system from a complex human clinical environment is not always a realistic expectation. On top of that, recruitment limitations, in addition to the nature of orthopaedic interventions and their associated cost, sometimes preclude consideration of human trials to answer a clinical question. Therefore, in this mini review, we sought to rationalize the rapid evolution of biomedical research at a basic scientific level and explain why the perception of orthopaedic conditions has fundamentally changed over the last decades. In more detail, we highlight that the number of orthopaedic <i>in vitro</i> publications has soared since 1990. Last but not least, we elaborated on the minimum requirements for conducting a scientifically sound infection-related laboratory experiment to offer valuable information to clinical practitioners. We also explained the rationale behind implementing molecular biology techniques, <i>ex vivo</i> experiments, and artificial intelligence in this type of laboratory research.</p>","PeriodicalId":47843,"journal":{"name":"World Journal of Orthopedics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/56/WJO-14-598.PMC10473912.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i> laboratory infection research in orthopaedics: Why, when, and how.\",\"authors\":\"Konstantinos Tsikopoulos, Lorenzo Drago, Gabriele Meroni, Dimitrios Kitridis, Byron Chalidis, Fotios Papageorgiou, Paraskevi Papaioannidou\",\"doi\":\"10.5312/wjo.v14.i8.598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The musculoskeletal system involves multiple tissues which are constantly exposed to being exposed to various biological and mechanical stimuli. As such, isolating and studying a particular system from a complex human clinical environment is not always a realistic expectation. On top of that, recruitment limitations, in addition to the nature of orthopaedic interventions and their associated cost, sometimes preclude consideration of human trials to answer a clinical question. Therefore, in this mini review, we sought to rationalize the rapid evolution of biomedical research at a basic scientific level and explain why the perception of orthopaedic conditions has fundamentally changed over the last decades. In more detail, we highlight that the number of orthopaedic <i>in vitro</i> publications has soared since 1990. Last but not least, we elaborated on the minimum requirements for conducting a scientifically sound infection-related laboratory experiment to offer valuable information to clinical practitioners. We also explained the rationale behind implementing molecular biology techniques, <i>ex vivo</i> experiments, and artificial intelligence in this type of laboratory research.</p>\",\"PeriodicalId\":47843,\"journal\":{\"name\":\"World Journal of Orthopedics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/56/WJO-14-598.PMC10473912.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Orthopedics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5312/wjo.v14.i8.598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Orthopedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5312/wjo.v14.i8.598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
In vitro laboratory infection research in orthopaedics: Why, when, and how.
The musculoskeletal system involves multiple tissues which are constantly exposed to being exposed to various biological and mechanical stimuli. As such, isolating and studying a particular system from a complex human clinical environment is not always a realistic expectation. On top of that, recruitment limitations, in addition to the nature of orthopaedic interventions and their associated cost, sometimes preclude consideration of human trials to answer a clinical question. Therefore, in this mini review, we sought to rationalize the rapid evolution of biomedical research at a basic scientific level and explain why the perception of orthopaedic conditions has fundamentally changed over the last decades. In more detail, we highlight that the number of orthopaedic in vitro publications has soared since 1990. Last but not least, we elaborated on the minimum requirements for conducting a scientifically sound infection-related laboratory experiment to offer valuable information to clinical practitioners. We also explained the rationale behind implementing molecular biology techniques, ex vivo experiments, and artificial intelligence in this type of laboratory research.