{"title":"6-巯基嘌呤负载的固体脂质纳米颗粒在肝癌治疗中的细胞毒活性增强。","authors":"Ahmet Doğan Ergin, Çağatay Oltulu, Büşra Koç","doi":"10.1089/adt.2023.007","DOIUrl":null,"url":null,"abstract":"<p><p>6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The <i>in vitro</i> cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"21 5","pages":"212-221"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment.\",\"authors\":\"Ahmet Doğan Ergin, Çağatay Oltulu, Büşra Koç\",\"doi\":\"10.1089/adt.2023.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The <i>in vitro</i> cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.</p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\"21 5\",\"pages\":\"212-221\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2023.007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced Cytotoxic Activity of 6-Mercaptopurine-Loaded Solid Lipid Nanoparticles in Hepatic Cancer Treatment.
6-Mercaptopurine (6-MCP) is an antiproliferative purine analog used in acute lymphoblastic leukemia, non-Hodgkin lymphoma, and inflammatory bowel disease (Crohn's disease, ulcerative colitis). Although 6-MCP has the great therapeutic potential for cancer and immunosuppressant-related diseases, 6-MCP is not readily soluble in water, presents a high first-pass effect, short half-life (0.5-1.5 h), and implies a low bioavailability (16%). On the contrary, solid lipid nanoparticles (SLNs) are prepared from solid lipids at room temperature and body temperature. In this study, SLNs were prepared w/o/w double emulsion-solvent evaporation method using Precirol ATO5 as matrix lipid. In the emulsion stabilization, surfactant (Tween 80) and polymeric stabilizer (polyvinyl alcohol [PVA]) were used. Two group formulations using Tween 80 and PVA were compared in terms of particle size, polydispersity index, zeta potential encapsulation efficiency%, and process yield%. Differential calorimetric analysis and release properties were examined for optimum formulation, and release kinetics were calculated. According to studies, sustained release was obtained with SLNs by the Korsmayer-Peppas kinetic model. The in vitro cytotoxicity studies were performed on the hepatocarcinoma (HEP3G) cell line. According to the results, successful SLN formulations were produced, and PVA was found best stabilizer. Optimum formulation exhibited significantly higher cytotoxic effects on HEP3G than on pure 6-MCP. These results demonstrated that solid lipid nanodrug delivery systems have great potential for formulation of 6-MCP.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts