对体外乳腺干细胞和祖细胞活性分层的microrna的比较分析揭示了人类miR-92b-3p的功能。

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
James L Miller, Matt Kanke, Gat Rauner, Kimaya M Bakhle, Praveen Sethupathy, Gerlinde R Van de Walle
{"title":"对体外乳腺干细胞和祖细胞活性分层的microrna的比较分析揭示了人类miR-92b-3p的功能。","authors":"James L Miller, Matt Kanke, Gat Rauner, Kimaya M Bakhle, Praveen Sethupathy, Gerlinde R Van de Walle","doi":"10.1007/s10911-022-09525-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"27 3-4","pages":"253-269"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative Analysis of microRNAs that Stratify in vitro Mammary stem and Progenitor Activity Reveals Functionality of Human miR-92b-3p.\",\"authors\":\"James L Miller, Matt Kanke, Gat Rauner, Kimaya M Bakhle, Praveen Sethupathy, Gerlinde R Van de Walle\",\"doi\":\"10.1007/s10911-022-09525-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.</p>\",\"PeriodicalId\":16413,\"journal\":{\"name\":\"Journal of Mammary Gland Biology and Neoplasia\",\"volume\":\"27 3-4\",\"pages\":\"253-269\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammary Gland Biology and Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10911-022-09525-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-022-09525-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 2

摘要

乳腺干细胞/祖细胞是乳腺发育和功能的基础。然而,除了传统上研究的啮齿动物、人类和反刍动物之外,关于它们在哺乳动物中的功能,还有很多有待阐明。由于越来越多的人认识到microrna (miRNA)是干细胞及其祖细胞的调节剂,我们在体外比较了具有不同乳腺干/祖细胞活性的哺乳动物乳腺干/祖细胞中miRNA的表达,以确定调节干/祖细胞自我更新和功能的候选miRNA。乳腺球源性上皮细胞(MDECs)是一种富含乳腺干细胞和祖细胞的原代细胞系,从6种哺乳动物物种(即牛、人、猪、马、狗和大鼠)中获得,并进行小RNA测序。我们鉴定出9个mirna在乳腺干/祖细胞活性低与高的MDEC培养物中显著表达差异。miR-92b-3p被选择用于功能随访研究,因为该miRNA在原代乳腺细胞中的研究尚不充分,但已知其具有调节乳腺干细胞/祖细胞活性的良好描述的基因靶点。通过抑制和过表达分别改变低干/祖细胞活性物种(人和牛)和高干/祖细胞活性物种(狗和大鼠)MDECs中miR-92b-3p的表达,可显著降低人MDECs的乳腺球形成,但对牛、狗或大鼠MDECs无显著影响。这项研究首次对来自各种哺乳动物的MDECs进行了小RNA测序,并强调了保守的mirna在不同物种的乳腺干细胞/祖细胞中具有不同的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative Analysis of microRNAs that Stratify in vitro Mammary stem and Progenitor Activity Reveals Functionality of Human miR-92b-3p.

Comparative Analysis of microRNAs that Stratify in vitro Mammary stem and Progenitor Activity Reveals Functionality of Human miR-92b-3p.

Mammary stem/progenitor cells are fundamental for mammary gland development and function. However, much remains to be elucidated regarding their function in mammals beyond the traditionally studied rodents, human, and to a lesser extent, ruminants. Due to the growing appreciation for microRNAs (miRNAs) as regulators of stem cells and their progenitors, we compared miRNA expression in mammary stem/progenitor cells from mammals with varying mammary stem/progenitor activity in vitro, in order to identify miRNA candidates that regulate stem/progenitor self-renewal and function. Mammosphere-derived epithelial cells (MDECs), which are primary cell lines enriched in mammary stem and progenitor cells, were generated from six mammalian species (i.e., cow, human, pig, horse, dog, and rat) and small RNA sequencing was performed. We identified 9 miRNAs that were significantly differentially expressed in MDEC cultures with a low versus high mammary stem/progenitor activity. miR-92b-3p was selected for functional follow-up studies, as this miRNA is understudied in primary mammary cells but has well-described gene targets that are known to regulate mammary stem/progenitor activity. Altering the expression of miR-92b-3p in MDECs from species with low stem/progenitor activity (human and cow) and those with high stem/progenitor activity (dog and rat) via inhibition and overexpression, respectively, resulted in significantly decreased mammosphere formation of human MDECs, but showed no significant effects in cow, dog, or rat MDECs. This study is the first to perform small RNA sequencing in MDECs from various mammals and highlights that conserved miRNAs can have different functions in mammary stem/progenitor cells across species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信