肌内质网钙atp酶(SERCA)泵:干预衰老和骨骼肌病变的潜在靶点。

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Hongyang Xu, Holly Van Remmen
{"title":"肌内质网钙atp酶(SERCA)泵:干预衰老和骨骼肌病变的潜在靶点。","authors":"Hongyang Xu,&nbsp;Holly Van Remmen","doi":"10.1186/s13395-021-00280-7","DOIUrl":null,"url":null,"abstract":"<p><p>As a key regulator of cellular calcium homeostasis, the Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump acts to transport calcium ions from the cytosol back to the sarcoplasmic reticulum (SR) following muscle contraction. SERCA function is closely associated with muscle health and function, and SERCA activity is susceptible to muscle pathogenesis. For example, it has been well reported that pathological conditions associated with aging, neurodegeneration, and muscular dystrophy (MD) significantly depress SERCA function with the potential to impair intracellular calcium homeostasis and further contribute to muscle atrophy and weakness. As a result, targeting SERCA activity has attracted attention as a therapeutical method for the treatment of muscle pathologies. The interventions include activation of SERCA activity and genetic overexpression of SERCA. This review will focus on SERCA function and regulation mechanisms and describe how those mechanisms are affected under muscle pathological conditions including elevated oxidative stress induced by aging, muscle disease, or neuromuscular disorders. We also discuss the current progress and therapeutic approaches to targeting SERCA in vivo.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"11 1","pages":"25"},"PeriodicalIF":5.3000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588740/pdf/","citationCount":"26","resultStr":"{\"title\":\"The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies.\",\"authors\":\"Hongyang Xu,&nbsp;Holly Van Remmen\",\"doi\":\"10.1186/s13395-021-00280-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a key regulator of cellular calcium homeostasis, the Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump acts to transport calcium ions from the cytosol back to the sarcoplasmic reticulum (SR) following muscle contraction. SERCA function is closely associated with muscle health and function, and SERCA activity is susceptible to muscle pathogenesis. For example, it has been well reported that pathological conditions associated with aging, neurodegeneration, and muscular dystrophy (MD) significantly depress SERCA function with the potential to impair intracellular calcium homeostasis and further contribute to muscle atrophy and weakness. As a result, targeting SERCA activity has attracted attention as a therapeutical method for the treatment of muscle pathologies. The interventions include activation of SERCA activity and genetic overexpression of SERCA. This review will focus on SERCA function and regulation mechanisms and describe how those mechanisms are affected under muscle pathological conditions including elevated oxidative stress induced by aging, muscle disease, or neuromuscular disorders. We also discuss the current progress and therapeutic approaches to targeting SERCA in vivo.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":\"11 1\",\"pages\":\"25\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588740/pdf/\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-021-00280-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-021-00280-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 26

摘要

肌内质网钙atp酶(SERCA)泵作为细胞钙稳态的关键调节因子,在肌肉收缩后将钙离子从细胞质转运回肌浆网(SR)。SERCA功能与肌肉健康和功能密切相关,SERCA活性易受肌肉发病的影响。例如,有报道称,与衰老、神经退行性变和肌营养不良(MD)相关的病理状况会显著抑制SERCA功能,从而可能损害细胞内钙稳态,进一步导致肌肉萎缩和无力。因此,靶向SERCA活性作为一种治疗肌肉病变的治疗方法引起了人们的关注。干预措施包括激活SERCA活性和SERCA基因过表达。这篇综述将重点关注SERCA的功能和调控机制,并描述这些机制是如何在肌肉病理条件下受到影响的,包括衰老、肌肉疾病或神经肌肉疾病引起的氧化应激升高。我们还讨论了目前在体内靶向SERCA的进展和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies.

The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies.

The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies.

The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies.

As a key regulator of cellular calcium homeostasis, the Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump acts to transport calcium ions from the cytosol back to the sarcoplasmic reticulum (SR) following muscle contraction. SERCA function is closely associated with muscle health and function, and SERCA activity is susceptible to muscle pathogenesis. For example, it has been well reported that pathological conditions associated with aging, neurodegeneration, and muscular dystrophy (MD) significantly depress SERCA function with the potential to impair intracellular calcium homeostasis and further contribute to muscle atrophy and weakness. As a result, targeting SERCA activity has attracted attention as a therapeutical method for the treatment of muscle pathologies. The interventions include activation of SERCA activity and genetic overexpression of SERCA. This review will focus on SERCA function and regulation mechanisms and describe how those mechanisms are affected under muscle pathological conditions including elevated oxidative stress induced by aging, muscle disease, or neuromuscular disorders. We also discuss the current progress and therapeutic approaches to targeting SERCA in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Skeletal Muscle
Skeletal Muscle CELL BIOLOGY-
CiteScore
9.10
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊介绍: The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators. Main areas of interest include: -differentiation of skeletal muscle- atrophy and hypertrophy of skeletal muscle- aging of skeletal muscle- regeneration and degeneration of skeletal muscle- biology of satellite and satellite-like cells- dystrophic degeneration of skeletal muscle- energy and glucose homeostasis in skeletal muscle- non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies- maintenance of neuromuscular junctions- roles of ryanodine receptors and calcium signaling in skeletal muscle- roles of nuclear receptors in skeletal muscle- roles of GPCRs and GPCR signaling in skeletal muscle- other relevant aspects of skeletal muscle biology. In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission. Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信