体外抑制CYP3A4、2C9和2E1活性。

IF 3.9 3区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY
Hongming Song, Chuankui Wei, Wu Yang, Zhaohe Niu, Mingkai Gong, Haiyan Hu, Haibo Wang
{"title":"体外抑制CYP3A4、2C9和2E1活性。","authors":"Hongming Song,&nbsp;Chuankui Wei,&nbsp;Wu Yang,&nbsp;Zhaohe Niu,&nbsp;Mingkai Gong,&nbsp;Haiyan Hu,&nbsp;Haibo Wang","doi":"10.1080/13880209.2022.2071450","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Alpinetin, the major active constitutes of <i>Alpinia katsumata</i> Hayata (Zingiberaceae), has been demonstrated to possess the activity of anti-breast cancer. Cytochrome P450 enzymes (CYP450s) plays vital roles in the biotransformation of various drugs.</p><p><strong>Objective: </strong>To assess the effect of alpinetin on the activity of CYP450s and estimate the inhibition characteristics.</p><p><strong>Materials and methods: </strong>The activity of CYP450s was evaluated in pooled human liver microsomes with corresponding substrates and marker reactions. The effect of alpinetin was compared with blank control (negative control) and corresponding inhibitors (positive control). The dose-dependent and time-dependent experiments were conducted in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM alpinetin and incubated for 0, 5, 10, 15, and 30 min.</p><p><strong>Results: </strong>Alpinetin suppressed CYP3A4, 2C9, and 2E1 activity. All the inhibitions were significantly influenced by alpinetin contration with the IC<sub>50</sub> values of 8.23 μM (CYP3A4), 12.64 μM (CYP2C9), and 10.97 μM (CYP2E1), respectively. The inhibition of CYP3A4 was fitted with the non-competitive model with a <i>Ki</i> value of 4.09 μM and was time-dependent with <i>KI</i> and <i>Kinact</i> values of 4.67 min and 0.041 μM<sup>-1</sup>, respectively. While CYP2C9 and 2E1 were inhibited by alpinetin competitively with <i>Ki</i> values of 6.42 (CYP2C9) and 5.40 μM (CYP2E1), respectively, in a time-independent manner.</p><p><strong>Discussion and conclusion: </strong>The <i>in vitro</i> inhibitory effect of alpineticn on CYP3A, 2C9, and 2E1 implied the potential interaction of alpinetin or its origin herbs with the drugs metabolised by those CYP450s, which needs further <i>in vivo</i> validation.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"60 1","pages":"1032-1037"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alpinetin suppresses CYP3A4, 2C9, and 2E1 activity <i>in vitro</i>.\",\"authors\":\"Hongming Song,&nbsp;Chuankui Wei,&nbsp;Wu Yang,&nbsp;Zhaohe Niu,&nbsp;Mingkai Gong,&nbsp;Haiyan Hu,&nbsp;Haibo Wang\",\"doi\":\"10.1080/13880209.2022.2071450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Alpinetin, the major active constitutes of <i>Alpinia katsumata</i> Hayata (Zingiberaceae), has been demonstrated to possess the activity of anti-breast cancer. Cytochrome P450 enzymes (CYP450s) plays vital roles in the biotransformation of various drugs.</p><p><strong>Objective: </strong>To assess the effect of alpinetin on the activity of CYP450s and estimate the inhibition characteristics.</p><p><strong>Materials and methods: </strong>The activity of CYP450s was evaluated in pooled human liver microsomes with corresponding substrates and marker reactions. The effect of alpinetin was compared with blank control (negative control) and corresponding inhibitors (positive control). The dose-dependent and time-dependent experiments were conducted in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM alpinetin and incubated for 0, 5, 10, 15, and 30 min.</p><p><strong>Results: </strong>Alpinetin suppressed CYP3A4, 2C9, and 2E1 activity. All the inhibitions were significantly influenced by alpinetin contration with the IC<sub>50</sub> values of 8.23 μM (CYP3A4), 12.64 μM (CYP2C9), and 10.97 μM (CYP2E1), respectively. The inhibition of CYP3A4 was fitted with the non-competitive model with a <i>Ki</i> value of 4.09 μM and was time-dependent with <i>KI</i> and <i>Kinact</i> values of 4.67 min and 0.041 μM<sup>-1</sup>, respectively. While CYP2C9 and 2E1 were inhibited by alpinetin competitively with <i>Ki</i> values of 6.42 (CYP2C9) and 5.40 μM (CYP2E1), respectively, in a time-independent manner.</p><p><strong>Discussion and conclusion: </strong>The <i>in vitro</i> inhibitory effect of alpineticn on CYP3A, 2C9, and 2E1 implied the potential interaction of alpinetin or its origin herbs with the drugs metabolised by those CYP450s, which needs further <i>in vivo</i> validation.</p>\",\"PeriodicalId\":19942,\"journal\":{\"name\":\"Pharmaceutical Biology\",\"volume\":\"60 1\",\"pages\":\"1032-1037\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13880209.2022.2071450\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2071450","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高松素是姜科植物胜腊果的主要活性成分,已被证明具有抗乳腺癌的活性。细胞色素P450酶(cyp450)在多种药物的生物转化中起着至关重要的作用。目的:评价高松素对cyp450活性的影响,并评价其抑制特性。材料和方法:用相应的底物和标记物反应在人肝微粒体中评价cyp450的活性。对照空白对照(阴性对照)和相应抑制剂(阳性对照)的作用。分别在0、2.5、5、10、25、50和100 μM浓度下进行剂量依赖性和时间依赖性实验,孵育0、5、10、15和30 min。结果:高松素抑制CYP3A4、2C9和2E1活性。所有抑制作用均受胰松素浓度的影响,IC50值分别为8.23 μM (CYP3A4)、12.64 μM (CYP2C9)和10.97 μM (CYP2E1)。对CYP3A4的抑制符合Ki值为4.09 μM的非竞争模型,Ki和Kinact值分别为4.67 min和0.041 μM-1,具有时间依赖性。而CYP2C9和2E1在Ki值分别为6.42 μM (CYP2C9)和5.40 μM (CYP2E1)时受alpinetin的竞争性抑制,且Ki值与时间无关。讨论与结论:体外对CYP3A、2C9、2E1的抑制作用提示了其与cyp450代谢的药物可能存在相互作用,有待进一步的体内验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alpinetin suppresses CYP3A4, 2C9, and 2E1 activity <i>in vitro</i>.

Alpinetin suppresses CYP3A4, 2C9, and 2E1 activity <i>in vitro</i>.

Alpinetin suppresses CYP3A4, 2C9, and 2E1 activity <i>in vitro</i>.

Alpinetin suppresses CYP3A4, 2C9, and 2E1 activity in vitro.

Context: Alpinetin, the major active constitutes of Alpinia katsumata Hayata (Zingiberaceae), has been demonstrated to possess the activity of anti-breast cancer. Cytochrome P450 enzymes (CYP450s) plays vital roles in the biotransformation of various drugs.

Objective: To assess the effect of alpinetin on the activity of CYP450s and estimate the inhibition characteristics.

Materials and methods: The activity of CYP450s was evaluated in pooled human liver microsomes with corresponding substrates and marker reactions. The effect of alpinetin was compared with blank control (negative control) and corresponding inhibitors (positive control). The dose-dependent and time-dependent experiments were conducted in the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM alpinetin and incubated for 0, 5, 10, 15, and 30 min.

Results: Alpinetin suppressed CYP3A4, 2C9, and 2E1 activity. All the inhibitions were significantly influenced by alpinetin contration with the IC50 values of 8.23 μM (CYP3A4), 12.64 μM (CYP2C9), and 10.97 μM (CYP2E1), respectively. The inhibition of CYP3A4 was fitted with the non-competitive model with a Ki value of 4.09 μM and was time-dependent with KI and Kinact values of 4.67 min and 0.041 μM-1, respectively. While CYP2C9 and 2E1 were inhibited by alpinetin competitively with Ki values of 6.42 (CYP2C9) and 5.40 μM (CYP2E1), respectively, in a time-independent manner.

Discussion and conclusion: The in vitro inhibitory effect of alpineticn on CYP3A, 2C9, and 2E1 implied the potential interaction of alpinetin or its origin herbs with the drugs metabolised by those CYP450s, which needs further in vivo validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Biology
Pharmaceutical Biology 医学-药学
CiteScore
6.70
自引率
2.60%
发文量
191
审稿时长
1 months
期刊介绍: Pharmaceutical Biology will publish manuscripts describing the discovery, methods for discovery, description, analysis characterization, and production/isolation (including sources and surveys) of biologically-active chemicals or other substances, drugs, pharmaceutical products, or preparations utilized in systems of traditional medicine. Topics may generally encompass any facet of natural product research related to pharmaceutical biology. Papers dealing with agents or topics related to natural product drugs are also appropriate (e.g., semi-synthetic derivatives). Manuscripts will be published as reviews, perspectives, regular research articles, and short communications. The primary criteria for acceptance and publication are scientific rigor and potential to advance the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信