Tung-Yuan Yung , Thangavel Sangeetha , Wei-Mon Yan , Cheng-Jung Yang , Po-Tuan Chen
{"title":"用于催化氧还原反应的ppdda修饰石墨烯上的非贵重且易获得的纳米氧化铁复合材料","authors":"Tung-Yuan Yung , Thangavel Sangeetha , Wei-Mon Yan , Cheng-Jung Yang , Po-Tuan Chen","doi":"10.1016/j.powera.2020.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposite catalysts composed of non-precious nanoparticles anchored by modified graphene for oxygen reduction reactions (ORRs) are the emphasis of research nowadays for wide application in electrocatalyst systems. Herein, an endeavor is made to report on a one-pot synthesis method to produce a catalyst for Fe<sub>3</sub>O<sub>4</sub> and Ni–NiO nanoparticles on Polydiallyldimethylammonium chloride-modified graphenes (PDDA-G). The nanocomposite is characterized by spectral measurements, using scanning electron spectroscopy (SEM), transmitting electron spectroscopy (TEM), x-ray diffractometer (XRD) and Raman spectroscopy to reveal its microstructure. Through a layer-by-layer PDDA-G investigation, a significant anchoring of nanoparticles and maintenance of the graphene with good electron transporting properties and spatial distance in nanoscale by PDDA is achieved. Additionally, the electrochemical properties of Fe<sub>3</sub>O<sub>4</sub>@PDDA-G and Ni–NiO@PDDA-G are demonstrated by linear scan voltammetry (LSV) with rotation disk electrode (RDE). Fe<sub>3</sub>O<sub>4</sub>@PDDA-G displays prominent ORR activity in 2-electron and 4-electron pathways, and better ORR mass activities than Ni–NiO@PDDA-G and commercial Pt/C. The results of this study provide a new strategy to develop material design approaches for high-performance electrocatalysts to be employed in fuel cells.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100025","citationCount":"1","resultStr":"{\"title\":\"Non-precious and accessible nanocomposite of iron oxide on PDDA-Modified graphene for catalyzing oxygen reduction reaction\",\"authors\":\"Tung-Yuan Yung , Thangavel Sangeetha , Wei-Mon Yan , Cheng-Jung Yang , Po-Tuan Chen\",\"doi\":\"10.1016/j.powera.2020.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocomposite catalysts composed of non-precious nanoparticles anchored by modified graphene for oxygen reduction reactions (ORRs) are the emphasis of research nowadays for wide application in electrocatalyst systems. Herein, an endeavor is made to report on a one-pot synthesis method to produce a catalyst for Fe<sub>3</sub>O<sub>4</sub> and Ni–NiO nanoparticles on Polydiallyldimethylammonium chloride-modified graphenes (PDDA-G). The nanocomposite is characterized by spectral measurements, using scanning electron spectroscopy (SEM), transmitting electron spectroscopy (TEM), x-ray diffractometer (XRD) and Raman spectroscopy to reveal its microstructure. Through a layer-by-layer PDDA-G investigation, a significant anchoring of nanoparticles and maintenance of the graphene with good electron transporting properties and spatial distance in nanoscale by PDDA is achieved. Additionally, the electrochemical properties of Fe<sub>3</sub>O<sub>4</sub>@PDDA-G and Ni–NiO@PDDA-G are demonstrated by linear scan voltammetry (LSV) with rotation disk electrode (RDE). Fe<sub>3</sub>O<sub>4</sub>@PDDA-G displays prominent ORR activity in 2-electron and 4-electron pathways, and better ORR mass activities than Ni–NiO@PDDA-G and commercial Pt/C. The results of this study provide a new strategy to develop material design approaches for high-performance electrocatalysts to be employed in fuel cells.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.powera.2020.100025\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248520300251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Non-precious and accessible nanocomposite of iron oxide on PDDA-Modified graphene for catalyzing oxygen reduction reaction
Nanocomposite catalysts composed of non-precious nanoparticles anchored by modified graphene for oxygen reduction reactions (ORRs) are the emphasis of research nowadays for wide application in electrocatalyst systems. Herein, an endeavor is made to report on a one-pot synthesis method to produce a catalyst for Fe3O4 and Ni–NiO nanoparticles on Polydiallyldimethylammonium chloride-modified graphenes (PDDA-G). The nanocomposite is characterized by spectral measurements, using scanning electron spectroscopy (SEM), transmitting electron spectroscopy (TEM), x-ray diffractometer (XRD) and Raman spectroscopy to reveal its microstructure. Through a layer-by-layer PDDA-G investigation, a significant anchoring of nanoparticles and maintenance of the graphene with good electron transporting properties and spatial distance in nanoscale by PDDA is achieved. Additionally, the electrochemical properties of Fe3O4@PDDA-G and Ni–NiO@PDDA-G are demonstrated by linear scan voltammetry (LSV) with rotation disk electrode (RDE). Fe3O4@PDDA-G displays prominent ORR activity in 2-electron and 4-electron pathways, and better ORR mass activities than Ni–NiO@PDDA-G and commercial Pt/C. The results of this study provide a new strategy to develop material design approaches for high-performance electrocatalysts to be employed in fuel cells.