Min Liu, Xiangwen Meng, Zihua Xuan, Simeng Chen, Jin Wang, Zhiluo Chen, Jiayu Wang, Xiaoyi Jia
{"title":"二苗散通过miRNA-33/NLRP3信号通路对佐剂性关节炎大鼠腹腔巨噬细胞极化的影响","authors":"Min Liu, Xiangwen Meng, Zihua Xuan, Simeng Chen, Jin Wang, Zhiluo Chen, Jiayu Wang, Xiaoyi Jia","doi":"10.1080/13880209.2022.2066700","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Er Miao San (EMS) is a formulation that contains <i>Atractylodis Rhizoma</i> and <i>Phellodendri Cortex</i> in 1:1 ratio, and is commonly used to treat rheumatoid arthritis (RA) and other inflammatory diseases.</p><p><strong>Objective: </strong>We investigated the mechanism of action and effects of EMS on peritoneal macrophage differentiation in a rat model of adjuvant arthritis (AA).</p><p><strong>Materials and methods: </strong>EMS (3, 1.5 and 0.75 g/kg; once daily) and methotrexate (0.5 mg/kg; once every 3 days) were administered orally from days 21 to 35 after immunisation. Paw swelling and arthritis index were measured; pathological changes in the ankle joint were observed using x-ray and haematoxylin eosin staining. The ratio of CD86/CD206 in macrophages was detected by flow cytometry. Examination of the miRNA-33/NLRP3 signalling pathway was examined by RT-qPCR and western blotting. The levels of cytokines in the serum and cell supernatants were tested by ELISA.</p><p><strong>Results: </strong>EMS significantly reduced the AA index in rats (from 11.0 to 9.3) and pathological changes in the ankle joint (from 3.8 to 1.4). The ratio of CD86/CD206 was reduced, and polarisation to M1 improved (from 0.9 to 0.6) in macrophages of EMS-treated rats. EMS downregulated the miRNA-33/NLRP3 pathway. Furthermore, EMS treatment increased IL-10 and TGF-β levels in the serum and supernatant of macrophages of AA rats and simultaneously decreased the levels of IL-1β and TNF-α.</p><p><strong>Discussion and conclusions: </strong>Our results suggest that EMS may reduce macrophage polarisation to the M1 inflammatory phenotype by downregulating the miRNA-33/NLRP3 pathway in AA rats. These findings may provide new insights into the treatment of RA.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"60 1","pages":"846-853"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132473/pdf/","citationCount":"10","resultStr":"{\"title\":\"Effect of Er Miao San on peritoneal macrophage polarisation through the miRNA-33/NLRP3 signalling pathway in a rat model of adjuvant arthritis.\",\"authors\":\"Min Liu, Xiangwen Meng, Zihua Xuan, Simeng Chen, Jin Wang, Zhiluo Chen, Jiayu Wang, Xiaoyi Jia\",\"doi\":\"10.1080/13880209.2022.2066700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Er Miao San (EMS) is a formulation that contains <i>Atractylodis Rhizoma</i> and <i>Phellodendri Cortex</i> in 1:1 ratio, and is commonly used to treat rheumatoid arthritis (RA) and other inflammatory diseases.</p><p><strong>Objective: </strong>We investigated the mechanism of action and effects of EMS on peritoneal macrophage differentiation in a rat model of adjuvant arthritis (AA).</p><p><strong>Materials and methods: </strong>EMS (3, 1.5 and 0.75 g/kg; once daily) and methotrexate (0.5 mg/kg; once every 3 days) were administered orally from days 21 to 35 after immunisation. Paw swelling and arthritis index were measured; pathological changes in the ankle joint were observed using x-ray and haematoxylin eosin staining. The ratio of CD86/CD206 in macrophages was detected by flow cytometry. Examination of the miRNA-33/NLRP3 signalling pathway was examined by RT-qPCR and western blotting. The levels of cytokines in the serum and cell supernatants were tested by ELISA.</p><p><strong>Results: </strong>EMS significantly reduced the AA index in rats (from 11.0 to 9.3) and pathological changes in the ankle joint (from 3.8 to 1.4). The ratio of CD86/CD206 was reduced, and polarisation to M1 improved (from 0.9 to 0.6) in macrophages of EMS-treated rats. EMS downregulated the miRNA-33/NLRP3 pathway. Furthermore, EMS treatment increased IL-10 and TGF-β levels in the serum and supernatant of macrophages of AA rats and simultaneously decreased the levels of IL-1β and TNF-α.</p><p><strong>Discussion and conclusions: </strong>Our results suggest that EMS may reduce macrophage polarisation to the M1 inflammatory phenotype by downregulating the miRNA-33/NLRP3 pathway in AA rats. These findings may provide new insights into the treatment of RA.</p>\",\"PeriodicalId\":19942,\"journal\":{\"name\":\"Pharmaceutical Biology\",\"volume\":\"60 1\",\"pages\":\"846-853\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132473/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13880209.2022.2066700\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13880209.2022.2066700","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Effect of Er Miao San on peritoneal macrophage polarisation through the miRNA-33/NLRP3 signalling pathway in a rat model of adjuvant arthritis.
Context: Er Miao San (EMS) is a formulation that contains Atractylodis Rhizoma and Phellodendri Cortex in 1:1 ratio, and is commonly used to treat rheumatoid arthritis (RA) and other inflammatory diseases.
Objective: We investigated the mechanism of action and effects of EMS on peritoneal macrophage differentiation in a rat model of adjuvant arthritis (AA).
Materials and methods: EMS (3, 1.5 and 0.75 g/kg; once daily) and methotrexate (0.5 mg/kg; once every 3 days) were administered orally from days 21 to 35 after immunisation. Paw swelling and arthritis index were measured; pathological changes in the ankle joint were observed using x-ray and haematoxylin eosin staining. The ratio of CD86/CD206 in macrophages was detected by flow cytometry. Examination of the miRNA-33/NLRP3 signalling pathway was examined by RT-qPCR and western blotting. The levels of cytokines in the serum and cell supernatants were tested by ELISA.
Results: EMS significantly reduced the AA index in rats (from 11.0 to 9.3) and pathological changes in the ankle joint (from 3.8 to 1.4). The ratio of CD86/CD206 was reduced, and polarisation to M1 improved (from 0.9 to 0.6) in macrophages of EMS-treated rats. EMS downregulated the miRNA-33/NLRP3 pathway. Furthermore, EMS treatment increased IL-10 and TGF-β levels in the serum and supernatant of macrophages of AA rats and simultaneously decreased the levels of IL-1β and TNF-α.
Discussion and conclusions: Our results suggest that EMS may reduce macrophage polarisation to the M1 inflammatory phenotype by downregulating the miRNA-33/NLRP3 pathway in AA rats. These findings may provide new insights into the treatment of RA.
期刊介绍:
Pharmaceutical Biology will publish manuscripts describing the discovery, methods for discovery, description, analysis characterization, and production/isolation (including sources and surveys) of biologically-active chemicals or other substances, drugs, pharmaceutical products, or preparations utilized in systems of traditional medicine.
Topics may generally encompass any facet of natural product research related to pharmaceutical biology. Papers dealing with agents or topics related to natural product drugs are also appropriate (e.g., semi-synthetic derivatives). Manuscripts will be published as reviews, perspectives, regular research articles, and short communications. The primary criteria for acceptance and publication are scientific rigor and potential to advance the field.