Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li
{"title":"无细胞代谢工程使脂肪酸能够选择性生物转化为增值化学品","authors":"Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li","doi":"10.1016/j.mec.2022.e00217","DOIUrl":null,"url":null,"abstract":"<div><p>Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like <em>Escherichia coli</em> have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an <em>E. coli</em>-based cell-free protein synthesis (CFPS) platform for <em>in vitro</em> conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/36/main.PMC9791597.pdf","citationCount":"4","resultStr":"{\"title\":\"Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals\",\"authors\":\"Yushi Liu , Wan-Qiu Liu , Shuhui Huang , Huiling Xu , Haofan Lu , Changzhu Wu , Jian Li\",\"doi\":\"10.1016/j.mec.2022.e00217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like <em>Escherichia coli</em> have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an <em>E. coli</em>-based cell-free protein synthesis (CFPS) platform for <em>in vitro</em> conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/36/main.PMC9791597.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030122000268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030122000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cell-free metabolic engineering enables selective biotransformation of fatty acids to value-added chemicals
Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like Escherichia coli have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an E. coli-based cell-free protein synthesis (CFPS) platform for in vitro conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.