{"title":"分化与未分化精原干细胞中POU5F1基因表达及蛋白定位的比较","authors":"Mahla Masoudi, Hossein Azizi, Kiana Sojoudi, Maedeh Yazdani, Dariush Gholami","doi":"10.1007/s42977-022-00149-w","DOIUrl":null,"url":null,"abstract":"<p><p>The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining self-renewal of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1 in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH), immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":"73 4","pages":"503-512"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells.\",\"authors\":\"Mahla Masoudi, Hossein Azizi, Kiana Sojoudi, Maedeh Yazdani, Dariush Gholami\",\"doi\":\"10.1007/s42977-022-00149-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining self-renewal of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1 in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH), immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\"73 4\",\"pages\":\"503-512\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-022-00149-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-022-00149-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells.
The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining self-renewal of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1 in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH), immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.
Biologia futuraAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍:
How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica).
In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.