{"title":"湖泊浮游植物分类群丰富度的季节格局:温度、周转量和丰度的影响","authors":"Stephen C. Maberly , Anne Chao , Bland J. Finlay","doi":"10.1016/j.protis.2022.125925","DOIUrl":null,"url":null,"abstract":"<div><p>Species richness is a key ecological characteristic that influences numerous ecosystem functions. Here we analyse the patterns and possible causes of phytoplankton taxon richness in seasonal datasets from twenty contrasting lakes in the English Lake District over six years and near-weekly datasets over 33 years from Windermere. Taxon richness was lowest in winter and highest in summer or autumn in all of the lakes. Observed richness was very similar to richness estimated from coverage and sampling effort, implying that it closely reflected true seasonal patterns. Summer populations were dominated by Chlorophyta and functional groups X1, F, N and P (<em>sensu</em> Reynolds). In Windermere, weekly taxon richness was strongly positively correlated with surface water temperature, as was the number of functional groups and the number of taxa per functional group. Turnover in richness of taxa and functional groups were positively correlated and both were related to surface temperature. This suggests that high taxon richness in summer is linked to higher water temperature, promoting a turnover in richness of taxa and functional groups in these lakes. However, since the number of taxa per unit concentration of chlorophyll <em>a</em> decreased with increasing concentration of chlorophyll <em>a</em>, competition might occur when abundance is high.</p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 6","pages":"Article 125925"},"PeriodicalIF":1.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1434461022000700/pdfft?md5=5a903e2a4160eda54e94ea932c611e85&pid=1-s2.0-S1434461022000700-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Seasonal Patterns of Phytoplankton Taxon Richness in Lakes: Effects of Temperature, Turnover and Abundance\",\"authors\":\"Stephen C. Maberly , Anne Chao , Bland J. Finlay\",\"doi\":\"10.1016/j.protis.2022.125925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Species richness is a key ecological characteristic that influences numerous ecosystem functions. Here we analyse the patterns and possible causes of phytoplankton taxon richness in seasonal datasets from twenty contrasting lakes in the English Lake District over six years and near-weekly datasets over 33 years from Windermere. Taxon richness was lowest in winter and highest in summer or autumn in all of the lakes. Observed richness was very similar to richness estimated from coverage and sampling effort, implying that it closely reflected true seasonal patterns. Summer populations were dominated by Chlorophyta and functional groups X1, F, N and P (<em>sensu</em> Reynolds). In Windermere, weekly taxon richness was strongly positively correlated with surface water temperature, as was the number of functional groups and the number of taxa per functional group. Turnover in richness of taxa and functional groups were positively correlated and both were related to surface temperature. This suggests that high taxon richness in summer is linked to higher water temperature, promoting a turnover in richness of taxa and functional groups in these lakes. However, since the number of taxa per unit concentration of chlorophyll <em>a</em> decreased with increasing concentration of chlorophyll <em>a</em>, competition might occur when abundance is high.</p></div>\",\"PeriodicalId\":20781,\"journal\":{\"name\":\"Protist\",\"volume\":\"173 6\",\"pages\":\"Article 125925\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1434461022000700/pdfft?md5=5a903e2a4160eda54e94ea932c611e85&pid=1-s2.0-S1434461022000700-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434461022000700\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434461022000700","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Seasonal Patterns of Phytoplankton Taxon Richness in Lakes: Effects of Temperature, Turnover and Abundance
Species richness is a key ecological characteristic that influences numerous ecosystem functions. Here we analyse the patterns and possible causes of phytoplankton taxon richness in seasonal datasets from twenty contrasting lakes in the English Lake District over six years and near-weekly datasets over 33 years from Windermere. Taxon richness was lowest in winter and highest in summer or autumn in all of the lakes. Observed richness was very similar to richness estimated from coverage and sampling effort, implying that it closely reflected true seasonal patterns. Summer populations were dominated by Chlorophyta and functional groups X1, F, N and P (sensu Reynolds). In Windermere, weekly taxon richness was strongly positively correlated with surface water temperature, as was the number of functional groups and the number of taxa per functional group. Turnover in richness of taxa and functional groups were positively correlated and both were related to surface temperature. This suggests that high taxon richness in summer is linked to higher water temperature, promoting a turnover in richness of taxa and functional groups in these lakes. However, since the number of taxa per unit concentration of chlorophyll a decreased with increasing concentration of chlorophyll a, competition might occur when abundance is high.
期刊介绍:
Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.