{"title":"基于神经模糊和神经网络的新型冠状病毒虚假信息分类系统综述","authors":"Bhavani Devi Ravichandran, Pantea Keikhosrokiani","doi":"10.1007/s00521-022-07797-y","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of Covid-19 misinformation on social media had significant real-world consequences, and it raised fears among internet users since the pandemic has begun. Researchers from all over the world have shown an interest in developing deception classification methods to reduce the issue. Despite numerous obstacles that can thwart the efforts, the researchers aim to create an automated, stable, accurate, and effective mechanism for misinformation classification. In this paper, a systematic literature review is conducted to analyse the state-of-the-art related to the classification of misinformation on social media. IEEE Xplore, SpringerLink, ScienceDirect, Scopus, Taylor & Francis, Wiley, Google Scholar are used as databases to find relevant papers since 2018-2021. Firstly, the study begins by reviewing the history of the issues surrounding Covid-19 misinformation and its effects on social media users. Secondly, various neuro-fuzzy and neural network classification methods are identified. Thirdly, the strength, limitations, and challenges of neuro-fuzzy and neural network approaches are verified for the classification misinformation specially in case of Covid-19. Finally, the most efficient hybrid method of neuro-fuzzy and neural networks in terms of performance accuracy is discovered. This study is wrapped up by suggesting a hybrid ANFIS-DNN model for improving Covid-19 misinformation classification. The results of this study can be served as a roadmap for future research on misinformation classification.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488884/pdf/","citationCount":"7","resultStr":"{\"title\":\"Classification of Covid-19 misinformation on social media based on neuro-fuzzy and neural network: A systematic review.\",\"authors\":\"Bhavani Devi Ravichandran, Pantea Keikhosrokiani\",\"doi\":\"10.1007/s00521-022-07797-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spread of Covid-19 misinformation on social media had significant real-world consequences, and it raised fears among internet users since the pandemic has begun. Researchers from all over the world have shown an interest in developing deception classification methods to reduce the issue. Despite numerous obstacles that can thwart the efforts, the researchers aim to create an automated, stable, accurate, and effective mechanism for misinformation classification. In this paper, a systematic literature review is conducted to analyse the state-of-the-art related to the classification of misinformation on social media. IEEE Xplore, SpringerLink, ScienceDirect, Scopus, Taylor & Francis, Wiley, Google Scholar are used as databases to find relevant papers since 2018-2021. Firstly, the study begins by reviewing the history of the issues surrounding Covid-19 misinformation and its effects on social media users. Secondly, various neuro-fuzzy and neural network classification methods are identified. Thirdly, the strength, limitations, and challenges of neuro-fuzzy and neural network approaches are verified for the classification misinformation specially in case of Covid-19. Finally, the most efficient hybrid method of neuro-fuzzy and neural networks in terms of performance accuracy is discovered. This study is wrapped up by suggesting a hybrid ANFIS-DNN model for improving Covid-19 misinformation classification. The results of this study can be served as a roadmap for future research on misinformation classification.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9488884/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-022-07797-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07797-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Classification of Covid-19 misinformation on social media based on neuro-fuzzy and neural network: A systematic review.
The spread of Covid-19 misinformation on social media had significant real-world consequences, and it raised fears among internet users since the pandemic has begun. Researchers from all over the world have shown an interest in developing deception classification methods to reduce the issue. Despite numerous obstacles that can thwart the efforts, the researchers aim to create an automated, stable, accurate, and effective mechanism for misinformation classification. In this paper, a systematic literature review is conducted to analyse the state-of-the-art related to the classification of misinformation on social media. IEEE Xplore, SpringerLink, ScienceDirect, Scopus, Taylor & Francis, Wiley, Google Scholar are used as databases to find relevant papers since 2018-2021. Firstly, the study begins by reviewing the history of the issues surrounding Covid-19 misinformation and its effects on social media users. Secondly, various neuro-fuzzy and neural network classification methods are identified. Thirdly, the strength, limitations, and challenges of neuro-fuzzy and neural network approaches are verified for the classification misinformation specially in case of Covid-19. Finally, the most efficient hybrid method of neuro-fuzzy and neural networks in terms of performance accuracy is discovered. This study is wrapped up by suggesting a hybrid ANFIS-DNN model for improving Covid-19 misinformation classification. The results of this study can be served as a roadmap for future research on misinformation classification.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.