{"title":"封闭环境中长期原位空气质量评价:气相色谱离子迁移谱适用性研究。","authors":"Pedro Catalão Moura, Valentina Vassilenko","doi":"10.1177/14690667231187502","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary life is mostly spent in indoor spaces like private houses, workplaces, vehicles and public facilities. Nonetheless, the air quality in these closed environments is often poor which leads to people being exposed to a vast range of toxic and hazardous compounds. Volatile organic compounds (VOCs) are among the main factors responsible for the lack of air quality in closed spaces and, in addition, some of them are particularly hazardous to the human organism. Considering this fact, we conducted daily <i>in situ</i> air analyses over 1 year using a gas chromatography-ion mobility spectrometry (GC-IMS) device in an indoor location. The obtained results show that 10 VOCs were consistently present in the indoor air throughout the entire year, making them particularly important for controlling air quality. All of these compounds were successfully identified, namely acetic acid, acetone, benzene, butanol, ethanol, isobutanol, propanoic acid, propanol, 2-propanol and tert-butyl methyl ether. The behaviour of the total VOCs (tVOCs) intensity during the period of analysis and the relative variation between consecutive months were studied. It was observed that the overall trend of tVOCs closely mirrored the variation of air temperature throughout the year suggesting their strong correlation. The results obtained from this study demonstrate the high quality and relevance of the data, highlighting the suitability of GC-IMS for <i>in situ</i> long-term air quality assessment in indoor environments and, consequently, for identifying potential health risks for the human organism in both short-term and long-term exposure scenarios.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466997/pdf/","citationCount":"1","resultStr":"{\"title\":\"Long-term <i>in situ</i> air quality assessment in closed environments: A gas chromatography-ion mobility spectrometry applicability study.\",\"authors\":\"Pedro Catalão Moura, Valentina Vassilenko\",\"doi\":\"10.1177/14690667231187502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contemporary life is mostly spent in indoor spaces like private houses, workplaces, vehicles and public facilities. Nonetheless, the air quality in these closed environments is often poor which leads to people being exposed to a vast range of toxic and hazardous compounds. Volatile organic compounds (VOCs) are among the main factors responsible for the lack of air quality in closed spaces and, in addition, some of them are particularly hazardous to the human organism. Considering this fact, we conducted daily <i>in situ</i> air analyses over 1 year using a gas chromatography-ion mobility spectrometry (GC-IMS) device in an indoor location. The obtained results show that 10 VOCs were consistently present in the indoor air throughout the entire year, making them particularly important for controlling air quality. All of these compounds were successfully identified, namely acetic acid, acetone, benzene, butanol, ethanol, isobutanol, propanoic acid, propanol, 2-propanol and tert-butyl methyl ether. The behaviour of the total VOCs (tVOCs) intensity during the period of analysis and the relative variation between consecutive months were studied. It was observed that the overall trend of tVOCs closely mirrored the variation of air temperature throughout the year suggesting their strong correlation. The results obtained from this study demonstrate the high quality and relevance of the data, highlighting the suitability of GC-IMS for <i>in situ</i> long-term air quality assessment in indoor environments and, consequently, for identifying potential health risks for the human organism in both short-term and long-term exposure scenarios.</p>\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466997/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667231187502\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667231187502","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Long-term in situ air quality assessment in closed environments: A gas chromatography-ion mobility spectrometry applicability study.
Contemporary life is mostly spent in indoor spaces like private houses, workplaces, vehicles and public facilities. Nonetheless, the air quality in these closed environments is often poor which leads to people being exposed to a vast range of toxic and hazardous compounds. Volatile organic compounds (VOCs) are among the main factors responsible for the lack of air quality in closed spaces and, in addition, some of them are particularly hazardous to the human organism. Considering this fact, we conducted daily in situ air analyses over 1 year using a gas chromatography-ion mobility spectrometry (GC-IMS) device in an indoor location. The obtained results show that 10 VOCs were consistently present in the indoor air throughout the entire year, making them particularly important for controlling air quality. All of these compounds were successfully identified, namely acetic acid, acetone, benzene, butanol, ethanol, isobutanol, propanoic acid, propanol, 2-propanol and tert-butyl methyl ether. The behaviour of the total VOCs (tVOCs) intensity during the period of analysis and the relative variation between consecutive months were studied. It was observed that the overall trend of tVOCs closely mirrored the variation of air temperature throughout the year suggesting their strong correlation. The results obtained from this study demonstrate the high quality and relevance of the data, highlighting the suitability of GC-IMS for in situ long-term air quality assessment in indoor environments and, consequently, for identifying potential health risks for the human organism in both short-term and long-term exposure scenarios.
期刊介绍:
JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.