量化纵向数据访问不规律性的程度。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Armend Lokku, Catherine S Birken, Jonathon L Maguire, Eleanor M Pullenayegum
{"title":"量化纵向数据访问不规律性的程度。","authors":"Armend Lokku,&nbsp;Catherine S Birken,&nbsp;Jonathon L Maguire,&nbsp;Eleanor M Pullenayegum","doi":"10.1515/ijb-2020-0144","DOIUrl":null,"url":null,"abstract":"<p><p>The timings of visits in observational longitudinal data may depend on the study outcome, and this can result in bias if ignored. Assessing the extent of visit irregularity is important because it can help determine whether visits can be treated as repeated measures or as irregular data. We propose plotting the mean proportions of individuals with 0 visits per bin against the mean proportions of individuals with >1 visit per bin as bin width is varied and using the area under the curve (AUC) to assess the extent of irregularity. The AUC is a single score which can be used to quantify the extent of irregularity and assess how closely visits resemble repeated measures. Simulation results confirm that the AUC increases with increasing irregularity while being invariant to sample size and the number of scheduled measurement occasions. A demonstration of the AUC was performed on the TARGet Kids! study which enrolls healthy children aged 0-5 years with the aim of investigating the relationship between early life exposures and later health problems. The quality of statistical analyses can be improved by using the AUC as a guide to select the appropriate analytic outcome approach and minimize the potential for biased results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantifying the extent of visit irregularity in longitudinal data.\",\"authors\":\"Armend Lokku,&nbsp;Catherine S Birken,&nbsp;Jonathon L Maguire,&nbsp;Eleanor M Pullenayegum\",\"doi\":\"10.1515/ijb-2020-0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The timings of visits in observational longitudinal data may depend on the study outcome, and this can result in bias if ignored. Assessing the extent of visit irregularity is important because it can help determine whether visits can be treated as repeated measures or as irregular data. We propose plotting the mean proportions of individuals with 0 visits per bin against the mean proportions of individuals with >1 visit per bin as bin width is varied and using the area under the curve (AUC) to assess the extent of irregularity. The AUC is a single score which can be used to quantify the extent of irregularity and assess how closely visits resemble repeated measures. Simulation results confirm that the AUC increases with increasing irregularity while being invariant to sample size and the number of scheduled measurement occasions. A demonstration of the AUC was performed on the TARGet Kids! study which enrolls healthy children aged 0-5 years with the aim of investigating the relationship between early life exposures and later health problems. The quality of statistical analyses can be improved by using the AUC as a guide to select the appropriate analytic outcome approach and minimize the potential for biased results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0144\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0144","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

观察性纵向资料的就诊时间可能取决于研究结果,如果忽略这一点,可能会导致偏倚。评估不正常访问的程度很重要,因为它可以帮助确定访问是否可以被视为重复测量或不正常数据。我们建议绘制每箱0次访问的个体的平均比例与每箱>1次访问的个体的平均比例,并使用曲线下面积(AUC)来评估不规则程度。AUC是一个单一的分数,可以用来量化不规范的程度,并评估访问与重复测量的密切程度。仿真结果证实,AUC随不规则性的增加而增加,而不受样本量和计划测量次数的影响。在目标孩子身上进行了AUC的演示!研究招募0-5岁的健康儿童,目的是调查早期生活暴露与以后健康问题之间的关系。通过使用AUC作为指导,选择适当的分析结果方法并最大限度地减少结果偏差的可能性,可以提高统计分析的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying the extent of visit irregularity in longitudinal data.

The timings of visits in observational longitudinal data may depend on the study outcome, and this can result in bias if ignored. Assessing the extent of visit irregularity is important because it can help determine whether visits can be treated as repeated measures or as irregular data. We propose plotting the mean proportions of individuals with 0 visits per bin against the mean proportions of individuals with >1 visit per bin as bin width is varied and using the area under the curve (AUC) to assess the extent of irregularity. The AUC is a single score which can be used to quantify the extent of irregularity and assess how closely visits resemble repeated measures. Simulation results confirm that the AUC increases with increasing irregularity while being invariant to sample size and the number of scheduled measurement occasions. A demonstration of the AUC was performed on the TARGet Kids! study which enrolls healthy children aged 0-5 years with the aim of investigating the relationship between early life exposures and later health problems. The quality of statistical analyses can be improved by using the AUC as a guide to select the appropriate analytic outcome approach and minimize the potential for biased results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信