解决儿童评估工具中的维度问题:多层次双因素模型的应用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-02-01 Epub Date: 2022-03-07 DOI:10.1177/00131644221082688
Hope O Akaeze, Frank R Lawrence, Jamie Heng-Chieh Wu
{"title":"解决儿童评估工具中的维度问题:多层次双因素模型的应用。","authors":"Hope O Akaeze, Frank R Lawrence, Jamie Heng-Chieh Wu","doi":"10.1177/00131644221082688","DOIUrl":null,"url":null,"abstract":"<p><p>Multidimensionality and hierarchical data structure are common in assessment data. These design features, if not accounted for, can threaten the validity of the results and inferences generated from factor analysis, a method frequently employed to assess test dimensionality. In this article, we describe and demonstrate the application of the multilevel bifactor model to address these features in examining test dimensionality. The tool for this exposition is the Child Observation Record Advantage 1.5 (COR-Adv1.5), a child assessment instrument widely used in Head Start programs. Previous studies on this assessment tool reported highly correlated factors and did not account for the nesting of children in classrooms. Results from this study show how the flexibility of the multilevel bifactor model, together with useful model-based statistics, can be harnessed to judge the dimensionality of a test instrument and inform the interpretability of the associated factor scores.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resolving Dimensionality in a Child Assessment Tool: An Application of the Multilevel Bifactor Model.\",\"authors\":\"Hope O Akaeze, Frank R Lawrence, Jamie Heng-Chieh Wu\",\"doi\":\"10.1177/00131644221082688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidimensionality and hierarchical data structure are common in assessment data. These design features, if not accounted for, can threaten the validity of the results and inferences generated from factor analysis, a method frequently employed to assess test dimensionality. In this article, we describe and demonstrate the application of the multilevel bifactor model to address these features in examining test dimensionality. The tool for this exposition is the Child Observation Record Advantage 1.5 (COR-Adv1.5), a child assessment instrument widely used in Head Start programs. Previous studies on this assessment tool reported highly correlated factors and did not account for the nesting of children in classrooms. Results from this study show how the flexibility of the multilevel bifactor model, together with useful model-based statistics, can be harnessed to judge the dimensionality of a test instrument and inform the interpretability of the associated factor scores.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221082688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221082688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

多维性和分层数据结构在测评数据中很常见。这些设计特征如果不加以考虑,就会威胁到因子分析(一种常用于评估测验维度的方法)所产生的结果和推论的有效性。在本文中,我们描述并演示了如何应用多层次双因素模型来解决这些问题。本文阐述的工具是儿童观察记录优势 1.5(COR-Adv1.5),这是一种广泛应用于启蒙项目的儿童评估工具。以前对这一评估工具的研究报告显示,该工具具有高度相关的因素,并且没有考虑到儿童在教室中的嵌套情况。这项研究的结果表明,如何利用多层次双因素模型的灵活性,以及基于模型的有用统计数据,来判断测试工具的维度,并为相关因素得分的可解释性提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolving Dimensionality in a Child Assessment Tool: An Application of the Multilevel Bifactor Model.

Multidimensionality and hierarchical data structure are common in assessment data. These design features, if not accounted for, can threaten the validity of the results and inferences generated from factor analysis, a method frequently employed to assess test dimensionality. In this article, we describe and demonstrate the application of the multilevel bifactor model to address these features in examining test dimensionality. The tool for this exposition is the Child Observation Record Advantage 1.5 (COR-Adv1.5), a child assessment instrument widely used in Head Start programs. Previous studies on this assessment tool reported highly correlated factors and did not account for the nesting of children in classrooms. Results from this study show how the flexibility of the multilevel bifactor model, together with useful model-based statistics, can be harnessed to judge the dimensionality of a test instrument and inform the interpretability of the associated factor scores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信