Abrar Alhindi, Megan Shand, Hannah L Smith, Ana S Leite, Yu-Ting Huang, Dinja van der Hoorn, Zara Ridgway, Kiterie M E Faller, Ross A Jones, Thomas H Gillingwater, Helena Chaytow
{"title":"hTDP-43过表达小鼠肌萎缩性侧索硬化症模型中神经肌肉连接处失神经支配和终末雪旺细胞丢失。","authors":"Abrar Alhindi, Megan Shand, Hannah L Smith, Ana S Leite, Yu-Ting Huang, Dinja van der Hoorn, Zara Ridgway, Kiterie M E Faller, Ross A Jones, Thomas H Gillingwater, Helena Chaytow","doi":"10.1111/nan.12925","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43<sup>WT</sup> mice. We therefore aimed to comprehensively analyse NMJ pathology in this model of ALS.</p><p><strong>Methods: </strong>Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology.</p><p><strong>Results: </strong>We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43<sup>WT</sup> mice. Thy1-driven hTDP-43 expression increased steadily, correlating with developing hindlimb motor weakness and associated motor neuron loss in the spinal cord with a median survival of 21 days. Pronounced NMJ denervation was observed in hindlimb muscles, mild denervation in cranial muscles but no evidence of denervation in either forelimb or trunk muscles. NMJ pathology was restricted to motor nerve terminals, with denervation following the same time course as motor neuron loss. Terminal Schwann cells were lost from NMJs in hindlimb muscles, directly correlating with denervation status.</p><p><strong>Conclusions: </strong>Thy1-hTDP-43<sup>WT</sup> mice represent a severe model of ALS, with NMJ pathology/denervation of distal muscles and motor neuron loss, as observed in ALS patients. This model therefore provides an ideal platform to investigate mechanisms of dying-back pathology, as well as NMJ-targeting disease-modifying therapies in ALS.</p>","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"49 4","pages":"e12925"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromuscular junction denervation and terminal Schwann cell loss in the hTDP-43 overexpression mouse model of amyotrophic lateral sclerosis.\",\"authors\":\"Abrar Alhindi, Megan Shand, Hannah L Smith, Ana S Leite, Yu-Ting Huang, Dinja van der Hoorn, Zara Ridgway, Kiterie M E Faller, Ross A Jones, Thomas H Gillingwater, Helena Chaytow\",\"doi\":\"10.1111/nan.12925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43<sup>WT</sup> mice. We therefore aimed to comprehensively analyse NMJ pathology in this model of ALS.</p><p><strong>Methods: </strong>Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology.</p><p><strong>Results: </strong>We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43<sup>WT</sup> mice. Thy1-driven hTDP-43 expression increased steadily, correlating with developing hindlimb motor weakness and associated motor neuron loss in the spinal cord with a median survival of 21 days. Pronounced NMJ denervation was observed in hindlimb muscles, mild denervation in cranial muscles but no evidence of denervation in either forelimb or trunk muscles. NMJ pathology was restricted to motor nerve terminals, with denervation following the same time course as motor neuron loss. Terminal Schwann cells were lost from NMJs in hindlimb muscles, directly correlating with denervation status.</p><p><strong>Conclusions: </strong>Thy1-hTDP-43<sup>WT</sup> mice represent a severe model of ALS, with NMJ pathology/denervation of distal muscles and motor neuron loss, as observed in ALS patients. This model therefore provides an ideal platform to investigate mechanisms of dying-back pathology, as well as NMJ-targeting disease-modifying therapies in ALS.</p>\",\"PeriodicalId\":19151,\"journal\":{\"name\":\"Neuropathology and Applied Neurobiology\",\"volume\":\"49 4\",\"pages\":\"e12925\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology and Applied Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nan.12925\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12925","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neuromuscular junction denervation and terminal Schwann cell loss in the hTDP-43 overexpression mouse model of amyotrophic lateral sclerosis.
Aims: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43WT mice. We therefore aimed to comprehensively analyse NMJ pathology in this model of ALS.
Methods: Expression of TDP-43 was assessed via western blotting. Immunohistochemistry techniques, alongside NMJ-morph quantification, were used to analyse motor neuron number, NMJ denervation status and terminal Schwann cell morphology.
Results: We present a time course of progressive, region-specific motor neuron pathology in Thy1-hTDP-43WT mice. Thy1-driven hTDP-43 expression increased steadily, correlating with developing hindlimb motor weakness and associated motor neuron loss in the spinal cord with a median survival of 21 days. Pronounced NMJ denervation was observed in hindlimb muscles, mild denervation in cranial muscles but no evidence of denervation in either forelimb or trunk muscles. NMJ pathology was restricted to motor nerve terminals, with denervation following the same time course as motor neuron loss. Terminal Schwann cells were lost from NMJs in hindlimb muscles, directly correlating with denervation status.
Conclusions: Thy1-hTDP-43WT mice represent a severe model of ALS, with NMJ pathology/denervation of distal muscles and motor neuron loss, as observed in ALS patients. This model therefore provides an ideal platform to investigate mechanisms of dying-back pathology, as well as NMJ-targeting disease-modifying therapies in ALS.
期刊介绍:
Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.